Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1179–1183 | Cite as

Synthesis and morphology evolution of GaN/C nanocables

  • Xuefeng Du
  • Yingchun Zhu
  • Tao Yang
  • Yue Shen
  • Yi Zeng
  • Fangfang Xu
Research Paper

Abstract

GaN/C nanocables were synthesized via a thermochemical process. The GaN/C nanocables were composed of single crystalline GaN nanowire cores with a mean diameter of 80 nm and parallel carbon sheathes with a thickness of several nanometers. We find that GaN nanocables were partially evolved into waved GaN nanowires and discontinuously ordered nanodots within the carbon sheaths due to the decomposition of GaN at high temperature regions. Both the carbon sheathes and GaN nanowire cores show a high degree of crystalline perfection. This method may be applied to coat a wide range of nanostructures with carbon sheathes and prepare various hetrostructures, which may serve as potential building blocks in nanodevices.

Keywords

GaN/C nanocables Chemical vapour deposition Coatings Decomposition Nanostructure 

References

  1. Bae SY, Seo HW, Park J et al (2002) Synthesis and structure of gallium nitride nanobelts. Chem Phys Lett 365:525–529. doi:10.1016/S0009-2614(02)01507-5 CrossRefADSGoogle Scholar
  2. Cai XM, Djurisic AB, Xie MH (2006) GaN nanowires: CVD synthesis and properties. Thin Solid Films 515:984–989. doi:10.1016/j.tsf.2006.07.085 CrossRefADSGoogle Scholar
  3. Chang KW, Wu JJ (2003) Temperature-controlled catalytic growth of one-dimensional gallium nitride nanostructures using a gallium organometallic precursor. Appl Phys A Mater Sci Process 77:769–774. doi:10.1007/s00339-003-2229-y CrossRefADSGoogle Scholar
  4. Chen CC, Yeh CC, Liang CH (2001) Preparation and characterization of carbon nanotubes encapsulated GaN nanowires. J Phys Chem Solids 62:1577–1586. doi:10.1016/S0022-3697(01)00097-X CrossRefADSGoogle Scholar
  5. Duan XF, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188–189. doi:10.1021/ja993713u CrossRefGoogle Scholar
  6. Han WQ, Redlich P, Ernst F et al (2000) Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere. Appl Phys Lett 76:652–654. doi:10.1063/1.125848 CrossRefADSGoogle Scholar
  7. Hu JT, Ouyang M, Yang P et al (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51. doi:10.1038/19941 CrossRefADSGoogle Scholar
  8. Huang Y, Duan X, Cui Y et al (2002) Gallium nitride nanowire nanodevices. Nano Lett 2:101–104. doi:10.1021/nl015667d CrossRefADSGoogle Scholar
  9. Kim TY, Lee H, Mo YH et al (2003) Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor. J Cryst Growth 257:97–103. doi:10.1016/S0022-0248(03)01422-2 CrossRefADSGoogle Scholar
  10. Kim HM, Choo YH, Lee H et al (2004) High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett 4:1059–1062. doi:10.1021/nl049615a CrossRefADSGoogle Scholar
  11. Kuykendall T, Pauzauskie P, Lee S et al (2003) Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett 3:1063–1066. doi:10.1021/nl034422t CrossRefADSGoogle Scholar
  12. Li ZJ, Chen XL, Li HJ et al (2001) Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires. Appl Phys A Mater Sci Process 72:629–632. doi:10.1007/s003390100796 CrossRefADSGoogle Scholar
  13. Liao L, Li JC, Liu C et al (2007) Field emission of GaN-filled carbon nanotubes: high and stable emission current. J Nanosci Nanotechnol 7:1080–1083. doi:10.1166/jnn.2007.413 PubMedCrossRefGoogle Scholar
  14. Liu BD, Bando Y, Tang CC et al (2006) Wurtzite-type faceted single-crystalline GaN nanotubes. Appl Phys Lett 88(093120):1–3Google Scholar
  15. Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281:956–961. doi:10.1126/science.281.5379.956 CrossRefGoogle Scholar
  16. Nam CY, Tham D, Fischer JE (2004) Effect of the polar surface on GaN nanostructure morphology and growth orientation. Appl Phys Lett 85:5676–5678. doi:10.1063/1.1829780 CrossRefADSGoogle Scholar
  17. Park HJ, Park C, Yeo S et al (2005) Epitaxial strain energy measurements of GaN on sapphire by Raman spectroscopy. Phys Status Solidif 2(c):2446–2449. doi:10.1002/pssc.200461513 CrossRefGoogle Scholar
  18. Ren F, Hong M, Chu SNG et al (1998) Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors. Appl Phys Lett 73:3893–3895. doi:10.1063/1.122927 CrossRefADSGoogle Scholar
  19. Sekiguchi T, Hu JQ, Bando Y (2004) Cathodoluminescence study of one-dimensional free-standing widegap-semiconductor nanostructures: GaN nanotubes, Si3N4 nanobelts and ZnS/Si nanowires. J Electron Microsc 53:203–208. doi:10.1093/jmicro/53.2.203 CrossRefGoogle Scholar
  20. Seryogin G, Shalish I, Moberlychan W et al (2005) Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology 16:2342–2345. doi:10.1088/0957-4484/16/10/058 CrossRefADSGoogle Scholar
  21. Son MS, Im SI, Park YS et al (2006) Ultraviolet photodetector based on single GaN nanorod p-n junctions. Mater Sci Eng C 26:886–888. doi:10.1016/j.msec.2005.09.089 CrossRefGoogle Scholar
  22. Suenaga K, Colliex C, Demoncy N et al (1997) Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278:653–655. doi:10.1126/science.278.5338.653 CrossRefADSGoogle Scholar
  23. Sutter E, Sutter P, Calarco R et al (2007) Assembly of ordered carbon shells on GaN nanowires. Appl Phys Lett 90(093118):1–3Google Scholar
  24. Wang ZG, Zu XT, Gao F et al (2007) Size dependence of melting of GaN nanowires with triangular cross sections. J Appl Phys 101(043511):1–4Google Scholar
  25. Xiang X, Cao CB, Xu YJ et al (2006) Large-scale synthesis and optical properties of hexagonal GaN micropyramid/nanowire homostructures. Nanotechnology 17:30–34. doi:10.1088/0957-4484/17/1/006 CrossRefADSGoogle Scholar
  26. Yin LW, Bando Y, Zhu YC et al (2004a) Indium-assisted synthesis on GaN nanotubes. Appl Phys Lett 84:3912–3914. doi:10.1063/1.1741026 CrossRefADSGoogle Scholar
  27. Yin LW, Bando Y, Zhu YC et al (2004b) Controlled carbon nanotube sheathing on ultrafine InP nanowires. Appl Phys Lett 84:5314–5316. doi:10.1063/1.1766079 CrossRefADSGoogle Scholar
  28. Zhi CY, Zhong DY, Wang EG (2003) GaN-filled carbon nanotubes: synthesis and photoluminescence. Chem Phys Lett 381:715–719. doi:10.1016/j.cplett.2003.09.141 CrossRefADSGoogle Scholar
  29. Zhou XT, Sham TK, Shan YY et al (2005) One-dimensional zigzag gallium nitride nanostructures. J Appl Phys 97(104315):1–6Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xuefeng Du
    • 1
    • 2
  • Yingchun Zhu
    • 1
  • Tao Yang
    • 1
  • Yue Shen
    • 2
  • Yi Zeng
    • 1
  • Fangfang Xu
    • 1
  1. 1.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.College of Material Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations