Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1331–1338 | Cite as

A chemical strategy to control the shape of oxide nanoparticles

Research Paper

Abstract

A new strategy, epoxide-assisted precipitation route presented in this work, allows the shape control synthesis of Co3O4 nanoparticles. The shape of the nanoparticles is determined by the nature of the precursor cobalt salts (Co(NO3)2 · 6H2O, CoCl2 · 6H2O) used for the preparation of the particles. The different reaction dynamics of the two salts in ethanolic and aqueous solutions with propylene oxide result in precursor particles with different structures, which lead to the formation of oxide nanoparticles with different shapes during the heat treatment. Spherical particles of about 20 nm are obtained from the ethanolic solution of Co(NO3)2 · 6H2O; cubic-shaped particles of about 30 nm can be prepared from the ethanolic solution of CoCl2 · 6H2O; whereas platelet-like particles of more than 100 nm are synthesized from the aqueous solution of the mixture of Co(NO3)2 · 6H2O and CoCl2 · 6H2O.

Keywords

Co3O4 Sol–gel Nanoparticles Shape control Colloids 

References

  1. Ando M, Kobayashi T, Iijima S, Harita M (1997) Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films. J Mater Chem 7:1779–1783. doi:10.1039/a700125h CrossRefGoogle Scholar
  2. Bocqueta S, Pollard RJ, Cashion JD (1995) Shape anisotropy in antiferromagnetic superparamagnetic particles. J Appt Phys 77:2809–2810. doi:10.1063/1.359567 CrossRefADSGoogle Scholar
  3. Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) A Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296. doi:10.1103/PhysRevB.54.9288 CrossRefADSGoogle Scholar
  4. Cozzoli PD, Manna L, Curri ML, Kudera S, Giannini C, Striccoli M et al (2005) Shape and phase control of colloidal ZnDe nanocrystal. Chem Mater 17:1296–1306. doi:10.1021/cm047874v CrossRefGoogle Scholar
  5. Cui H, Zayat M, Levy D (2005a) A sol–gel route using propylene oxide as a elation agent to synthesize spherical NiAl2O4 nanoparticles J. Non-Cryst Solids 351:2102–2106. doi:10.1016/j.jnoncrysol.2005.04.060 CrossRefADSGoogle Scholar
  6. Cui H, Zayat M, Levy D (2005b) Sol–gel synthesis of nanoscaled spinels using propylene oxide as a gelation agent. J Sol-Gel Sci Technol 35:175–181. doi:10.1007/s10971-005-4165-0 CrossRefGoogle Scholar
  7. Cui H, Zayat M, Levy D (2005c) Nanoparticle synthesis of willemite doped with cobalt ions (Co0.05Zn1.95SiO4) by an epoxide-assisted sol–gel method. Chem Mater 17:5562–5566. doi:10.1021/cm051289s CrossRefGoogle Scholar
  8. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater 13:435–440. doi:10.1021/cm000607e CrossRefGoogle Scholar
  9. Filankembo A, Pileni MP (2000) Is the template of self-colloidal assemblies the only factor that controls nanocrystal shapes? J Phys Chem B 104:5865–5868. doi:10.1021/jp000268c CrossRefGoogle Scholar
  10. Gash AE, Tillotson TM, Satcher JH Jr, Poco JF, Hrubesh LW, Simpson RL (2001a) Use of epoxides in the sol–gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem Mater 13:999–1007. doi:10.1021/cm0007611 CrossRefGoogle Scholar
  11. Gash AE, Tillotson TM, Satcher JH Jr, Poco JFL, Hrubesh W, Simpson RL (2001b) New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285:22–28. doi:10.1016/S0022-3093(01)00427-6 CrossRefADSGoogle Scholar
  12. He T, Chen D, Jiao X, Xu Y, Gu Y (2004) Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir 20:8404–8408. doi:10.1021/la0488710 PubMedCrossRefGoogle Scholar
  13. Hong J, Wu R (2005) Oxygen-induced spin-polarized ferromagnetic state of a 1D CuO nanowire. J Korean Phys Soc 47:L553–L557Google Scholar
  14. Ichiyanagi Y, Yamada S (2005) The size-dependent magnetic properties of Co3O4 nanoparticles. Polyhedron 24:2813–2816. doi:10.1016/j.poly.2005.03.158 CrossRefGoogle Scholar
  15. Jiang C, Zhang W, Zou G, Yu W, Qian Y (2005) Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO. J Phys Chem B 109:1361–1363. doi:10.1021/jp046655u PubMedCrossRefGoogle Scholar
  16. Kahn ML, Monge M, Collière V, Senocq F, Maisonnat A, Chaudret B (2005) Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv Funct Mater 15:458–468. doi:10.1002/adfm.200400113 CrossRefGoogle Scholar
  17. Kim Y, Jun Y, Jun B, Lee S, Cheon J (2002) Sterically induced shape and crystalline phase control of GaP nanocrystals. J Am Chem Soc 124:13656–13657. doi:10.1021/ja027575b PubMedCrossRefGoogle Scholar
  18. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396. doi:10.1103/PhysRevLett.79.1393 CrossRefADSGoogle Scholar
  19. Lee GH, Huh SH, Jeong JW, Choi BJ, Kim SH, Ri HC (2002) Anomalous magnetic properties of MnO nanoclusters. J Am Chem Soc 24:12094–12095. doi:10.1021/ja027558m CrossRefGoogle Scholar
  20. Liu C, Zhang Z (2001) Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem Mater 13:2092–2096. doi:10.1021/cm0009470 CrossRefGoogle Scholar
  21. Néel L (1962) Low temperature physics. Gordon and Beach, New YorkGoogle Scholar
  22. Nethravathi C, Sen S, Ravishankar N, Rajamathi M, Pietzonka C, Harbrecht B (2005) Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt hydroxide. J Phys Chem B 109:11468–11472. doi:10.1021/jp050725v PubMedCrossRefGoogle Scholar
  23. Nkeng P, Koening J, Gautier J, Chartier P, Poillerat G (1996) Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. J Electroanal Chem 402:81–89. doi:10.1016/0022-0728(95)04254-7 CrossRefGoogle Scholar
  24. Park J, Kang E, Bae C, Park J, Noh H, Kim J et al (2004) Synthesis, characterization, and magnetic properties of uniform-sized MnO nanospheres and nanorods. J Phys Chem B 108:13594–13598. doi:10.1021/jp048229e CrossRefGoogle Scholar
  25. Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem Int Ed 45:261–265. doi:10.1002/anie.200502823 CrossRefGoogle Scholar
  26. Ramachandram K, Oriakhi CO, Lerner MM, Koch VR (1996) Intercalation chemistry of cobalt and nickel dioxides: a facile route to new compounds containing organocations. Mater Res Bull 31:767–772. doi:10.1016/0025-5408(96)00070-0 CrossRefGoogle Scholar
  27. Reibold RA, Poco JF, Baumann TF, Simpson RL Jr, Satcher JH (2003) Synthesis and characterization of a low-density urania (UO3) aerogel. J Non-Cryst Solids 319:241–246. doi:10.1016/S0022-3093(03)00012-7 CrossRefADSGoogle Scholar
  28. Seo W, Jo H, Lee K, Kim B, Oh S, Park T (2004) Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew Chem Int Ed 43:1115–1117. doi:10.1002/anie.200352400 CrossRefGoogle Scholar
  29. Song Q, Zhang Z (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168. doi:10.1021/ja049931r PubMedCrossRefGoogle Scholar
  30. Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) Pt nanocrystals: shape control and Langmuir–Blodgett monolayer formation. J Phys Chem B 109:188–193. doi:10.1021/jp0464775 PubMedCrossRefGoogle Scholar
  31. Suh D, Park T, Kim W, Hong I (2003) Synthesis of high-surface-area ruthenium oxide aerogels by non-alkoxide sol–gel route. J Power Sources 117:1–6. doi:10.1016/S0378-7753(02)00617-1 CrossRefGoogle Scholar
  32. Svegl F, Orel B, Hutchins MG, Kalcher K (1996) Structural and spectroelectrochemical investigations of sol–gel derived electrochromic spinel Co3O4 films. J Electrochem Soc 143:1532–1539. doi:10.1149/1.1836675 CrossRefGoogle Scholar
  33. Vestal CR, Zhang Z (2002) Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties. Chem Mater 14:3817–3822. doi:10.1021/cm020112k CrossRefGoogle Scholar
  34. Wang Y, Yang CM, Schmidt W, Spliethoff B, Bill E, Schüth F (2005) Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Adv Mater 17:53–56. doi:10.1002/adma.200400777 CrossRefGoogle Scholar
  35. Wolff PM (1953) The crystal structure of Co2(OH)3Cl. Acta Crystallogr 6:359–360. doi:10.1107/S0365110X53000958 CrossRefGoogle Scholar
  36. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087 CrossRefGoogle Scholar
  37. Zhang Q, Gao L (2003) Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2. Langmuir 19:967–971. doi:10.1021/la020310q CrossRefMathSciNetGoogle Scholar
  38. Zysler RD, Mansilla MV, Fiorani D (2004) Surface effects in α-Fe2O3 nanoparticles. Eur Phys J B 41:171–175. doi:10.1140/epjb/e2004-00306-7 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Chemistry and BiologyYantai UniversityYantaiChina
  2. 2.Instituto de Ciencia de Materiales de Madrid—ICMM, C.S.I.C.MadridSpain

Personalised recommendations