Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1107–1115 | Cite as

Controlled synthesis and characterization of layered manganese oxide nanostructures with different morphologies

  • Naicai Xu
  • Zong-Huai Liu
  • Xiangrong Ma
  • Shanfeng Qiao
  • Jiaqi Yuan
Research Paper

Abstract

Layered manganese oxide nanostructures with different morphologies, such as nanowire bundles, cotton agglomerates, and platelikes were successfully fabricated by a simple and template-free hydrothermal method based on a reaction of KMnO4 and KOH solutions with different concentrations. The obtained nanowire bundles were assembled by nanowires with diameters of 10 to 200 nm and lengths up to 5–10 μm. The cotton agglomerates were composed of manganese oxide layers with a thickness of about 10 nm. Both the concentration of KOH solutions and the reaction temperature played an important role in the formation of layered manganese oxide nanostructures with different morphologies. XRD, SEM, TEM, HRTEM, SAED, TG-DTA, and chemical analysis were employed to characterize these materials. On the basis of the experimental results, a possible formation mechanism of layered manganese oxide nanostructures with different morphologies was presented.

Keywords

Layered manganese oxide Nanocomposites Morphology Nanowire bundles Hydrothermal synthesis 

Supplementary material

11051_2008_9517_MOESM1_ESM.tif (57 kb)
(TIFF 56 kb)
11051_2008_9517_MOESM2_ESM.tif (62 kb)
(TIFF 61 kb)

References

  1. Bach S, Henry M, Baffier N, Livage J (1990) Sol–gel synthesis of manganese oxides. J Solid State Chem 88:325–333. doi:10.1016/0022-4596(90)90228-P CrossRefADSGoogle Scholar
  2. Chen R, Zavalij P, Whittingham MS (1996) Hydrothermal synthesis and characterization of KxMnO2 · yH2O. Chem Mater 8:1275–1280. doi:10.1021/cm950550+ CrossRefGoogle Scholar
  3. Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333. doi:10.1039/a805369c CrossRefGoogle Scholar
  4. Ferreira OP, Otubo L, Romano R, Alves OL (2006) One-dimensional nanostructures from layered manganese oxide. Cryst Growth Des 6:601–606. doi:10.1021/cg0503503 CrossRefGoogle Scholar
  5. Ge J, Zhuo L, Yang F, Tang B, Wu L, Tung C (2006) One-dimensional hierarchical layered KxMnO2 (x < 0.3) nanoarchitectures: synthesis, characterization, and their magnetic properties. J Phys Chem B 110:17854–17859. doi:10.1021/jp0631127 PubMedCrossRefGoogle Scholar
  6. Japan Industrial Standard (JIS): JIS M8233 (1969) Methods for determination of active oxygen in manganese ores. Japanese Standards Association, TokyoGoogle Scholar
  7. Ma R, Bando Y, Zhang L, Sasaki T (2004a) Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv Mater 16:918–922. doi:10.1002/adma.200306592 CrossRefGoogle Scholar
  8. Ma R, Bando Y, Sasaki T (2004b) Directly rolling nanosheets into nanotubes. J Phys Chem B 108:2115–2119. doi:10.1021/jp037200s CrossRefGoogle Scholar
  9. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949. doi:10.1126/science.1058120 PubMedCrossRefADSGoogle Scholar
  10. Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395. doi:10.1021/ja0027766 CrossRefGoogle Scholar
  11. Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353. doi:10.1021/ja0173167 PubMedCrossRefGoogle Scholar
  12. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A et al (2000) Shape control of CdSe nanocrystals. Nature 404:59–61. doi:10.1038/35003535 PubMedCrossRefADSGoogle Scholar
  13. Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971. doi:10.1126/science.281.5379.969 PubMedCrossRefADSGoogle Scholar
  14. Shen X, Ding Y, Liu J, Cai J, Laubernds K, Zerger RP et al (2005) Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv Mater 17:805–809. doi:10.1002/adma.200401225 CrossRefGoogle Scholar
  15. Shen X, Ding Y, Hanson JC, Aindow M, Suib SL (2006) In situ synthesis of mixed-valent manganese oxide nanocrystals: an in situ synchrotron X-ray diffraction study. J Am Chem Soc 128:4570–4571. doi:10.1021/ja058456+ PubMedCrossRefGoogle Scholar
  16. Shi W, Peng H, Wang N, Li CP, Xu L, Lee CS et al (2001) Free-standing single crystal silicon nanoribbons. J Am Chem Soc 123:11095–11096. doi:10.1021/ja0162966 PubMedCrossRefGoogle Scholar
  17. Song XC, Zhao Y, Zheng YF (2007) Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst Growth Des 7:159–162. doi:10.1021/cg060536h CrossRefADSGoogle Scholar
  18. Trentler TJ, Goel SC, Hickman KM, Viano AM, Ching MY, Beatty AM et al (1997) Solution–liquid–solid growth of indium phosphide fibers from organometallic precursors: elucidation of molecular and nonmolecular components of the pathway. J Am Chem Soc 119:2172–2181. doi:10.1021/ja9640859 CrossRefGoogle Scholar
  19. Wang ZL, Feng X (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107:13563–13566. doi:10.1021/jp036815m CrossRefGoogle Scholar
  20. Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J 9:300–306. doi:10.1002/chem.200390024 CrossRefGoogle Scholar
  21. Wang L, Ebina Y, Takada K, Sasaki T (2004) Ultrathin hollow nanoshells of manganese oxide. Chem Commun (Camb) 9:1074–1075. doi:10.1039/b402209b CrossRefGoogle Scholar
  22. Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J et al (2005) Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chem Phys Lett 401:374–379. doi:10.1016/j.cplett.2004.11.080 CrossRefADSGoogle Scholar
  23. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087 CrossRefGoogle Scholar
  24. Yang L, Zhu Y, Wang W, Tong H, Ruan M (2006) Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. J Phys Chem B 110:6609–6614. doi:10.1021/jp0569739 PubMedCrossRefGoogle Scholar
  25. Zhang L, Liu Z, Lv H, Tang X, Ooi K (2007) Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J Phys Chem C 111:8418–8423. doi:10.1021/jp070982v CrossRefGoogle Scholar
  26. Zhao L, Zhang H, Xing Y, Song S, Yu S, Shi W et al (2007) Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties. Chem Mater 20:198–204. doi:10.1021/cm702352y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Naicai Xu
    • 1
    • 2
  • Zong-Huai Liu
    • 1
    • 2
  • Xiangrong Ma
    • 1
    • 2
  • Shanfeng Qiao
    • 1
    • 2
  • Jiaqi Yuan
    • 1
    • 2
  1. 1.Key Laboratory of Aplied Surface and Colloid Chemistry, Shaanxi Normal UniversityMinistry of EducationXi’anPeople’s Republic of China
  2. 2.School of Chemistry and Materials ScienceShaanxi Normal UniversityXi’an, ShaanxiPeople’s Republic of China

Personalised recommendations