Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1201–1208 | Cite as

Microwave-assisted functionalization of single-walled carbon nanotubes with 3-chloropropene

Research Paper

Abstract

We have reported a highly efficient approach to functionalize single-walled carbon nanotubes by electrophilic addition polymerization of 3-chloropropene under microwave irradiation. Using Lewis acids as catalysts, 3-chloropropene can undergo polymerization followed by hydrolysis with alkaline methanol, and thus the reaction results in the attachment of polymer chains and hydroxyl groups to the surface of the nanotubes. The resulting nanotubes were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, high-resolution transmission electron microscopy, and atomic force microscopy. The result shows that 30 min of irradiation time is enough to bring the reaction to the end and a longer time did not improve the degree of functionalization.

Keywords

Carbon nanotubes Chloro-propene Polymerization Microwave radiation Functionalization SWCN 

References

  1. Baskaran D, Mays JW, Bratcher MS (2004) Polymer-Grafted Multiwalled Carbon Nanotubes through Surface-Initiated Polymerization. Angew Chem Int Ed 43:2138–2142. doi:10.1002/anie.200353329 CrossRefGoogle Scholar
  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792. doi:10.1126/science.1060928 PubMedCrossRefADSGoogle Scholar
  3. Bensebaa F, Zavaliche F, L’Ecuyer P, Cochrane RW, Veres T (2004) Microwave synthesis and characterization of Co-ferrite nanoparticles. J Colloid Interface Sci 277:104–110. doi:10.1016/j.jcis.2004.04.016 PubMedCrossRefGoogle Scholar
  4. Brunetti FG, Herrero MA, Mun˜oz JM, Giordani S, Dı’az-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato M, Va’zquez E (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581. doi:10.1021/ja077927k PubMedCrossRefGoogle Scholar
  5. Brunetti FG, Herrero MA, Mun˜oz JM, Dı’az-Ortiz A, Alfonsi J, Meneghetti M, Prato M, Va’zquez E (2008) Microwave-induced multiple functionalization of carbon nanotubes. J Am Chem Soc 130:8094–8100. doi:10.1021/ja801971k PubMedCrossRefGoogle Scholar
  6. George M, Rodgers H (1995) Applications of microwave-accelerated organic synthesis. Radiat Phys Chem 45:567–579. doi:10.1016/0969-806X(94)00071-Q CrossRefGoogle Scholar
  7. Guo GQ, Yang D, Wang CC, Shu Y (2006) “Fishing” polymer brushes on single-walled carbon nanotubes by in situ free radical polymerization in a poor solvent. Macromolecules 39:9035–9040. doi:10.1021/ma061715a CrossRefADSGoogle Scholar
  8. Heller DA, Barone PW, Strano MS (2005) Sonication-induced changes in chiral distribution: a complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon 43:651–653. doi:10.1016/j.carbon.2004.10.010 CrossRefGoogle Scholar
  9. Kitagawa T, Takeuchi K (2001) Monofunctionalized C60 ions: their generation, stability, and reactions. Bull Chem Soc Jpn 74:785–800. doi:10.1246/bcsj.74.785 CrossRefGoogle Scholar
  10. Kitagawa T, Sakamoto H, Takeuchi K (1999) Electrophilic addition of polychloroalkanes to C60: direct observation of alkylfullerenyl cation intermediates. J Am Chem Soc 121:4298–4299. doi:10.1021/ja9900048 CrossRefGoogle Scholar
  11. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho K et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625. doi:10.1126/science.287.5453.622 PubMedCrossRefADSGoogle Scholar
  12. Lee HJ, Oh SJ, Choi JY, Kim JW, Han J, Tan LS et al (2005) In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17:5057–5064. doi:10.1021/cm051218t CrossRefGoogle Scholar
  13. Li JX, Grennberg H (2006) Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes. Chem Eur J 12:3869–3875. doi:10.1002/chem.200501314 CrossRefGoogle Scholar
  14. Li HM, Cheng FY, Andy MD, Adronov A (2005) Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J Am Chem Soc 127:14518–14524. doi:10.1021/ja054958b PubMedCrossRefGoogle Scholar
  15. Liu J, Zubiri MR, Vigolo B, Dossot M, Fort Y, Ehrhardt JJ et al (2007) Efficient microwave-assisted radical functionalization of single-wall carbon nanotubes. Carbon 45:885–891. doi:10.1016/j.carbon.2006.11.006 CrossRefGoogle Scholar
  16. Nadagouda MN, Varma RS (2007) Microwave-assisted synthesis of crosslinked poly(vinyl alcohol) nanocomposites comprising single-walled carbon nanotubes, multi-walled carbon nanotubes, and buckminsterfullerene. Macromol Rapid Commun 28:842–847. doi:10.1002/marc.200600878 CrossRefGoogle Scholar
  17. Nardelli MB, Yakobson BI, Bernholc J (1998) Mechanism of strain release in carbon nanotubes. Phys Rev B 57:4277–4288. doi:10.1103/PhysRevB.57.R4277 CrossRefADSGoogle Scholar
  18. Raghuveer MS, Agrawal S, Bishop N, Ramanath G (2006) Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem Mater 18:1390–1393. doi:10.1021/cm051911g CrossRefGoogle Scholar
  19. Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res 38:653–661. doi:10.1021/ar040278m PubMedCrossRefGoogle Scholar
  20. Salvetat JP, Briggs GAD, Bonard JM, Basca RR, Kulik AJ, Stockli T et al (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947. doi:10.1103/PhysRevLett.82.944 CrossRefADSGoogle Scholar
  21. Tagmatarchis N, Georgakilas V, Prato M, Shinohara H (2002) Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem Commun (Camb) 18:2010–2011. doi:10.1039/b204366a CrossRefGoogle Scholar
  22. Umeyama T, Tezuka N, Fujita M, Matano Y, Takeda N, Murakoshi K et al (2007) Retention of Intrinsic Electronic Properties of Soluble Single-Walled Carbon Nanotubes after a Significant Degree of Sidewall Functionalization by the Bingel Reaction. J Phys Chem C 111:9734–9741. doi:10.1021/jp071604t CrossRefGoogle Scholar
  23. Wang YB, Iqbal Z, Mitra S (2005) Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43:1015–1020. doi:10.1016/j.carbon.2004.11.036 CrossRefGoogle Scholar
  24. Wang YB, Iqbal Z, Mitra S (2006) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128:95–99. doi:10.1021/ja053003q PubMedCrossRefGoogle Scholar
  25. Wang CY, Chen TH, Chang SC, Cheng SY, Chin TS (2007a) Strong carbon-nanotube-polymer bonding by microwave irradiation. Adv Funct Mater 17:1979–1983. doi:10.1002/adfm.200601011 CrossRefGoogle Scholar
  26. Wang XB, Li SQ, Xu Y, Wan L, You HJ, Li Q et al (2007b) Radical functionalization of single-walled carbon nanotubes with azo(bisisobutyronitrile). Appl Surf Sci 253:7435–7437. doi:10.1016/j.apsusc.2007.03.048 CrossRefADSGoogle Scholar
  27. Xie L, Xu F, Qin F, Lu HB, Yang YL (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40:3296–3305. doi:10.1021/ma062103t CrossRefADSGoogle Scholar
  28. Xu HX, Wang XB, Zhang YF, Liu SY (2006) Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under 60Co ç-ray irradiation. Chem Mater 18:2929–2934. doi:10.1021/cm052840o CrossRefGoogle Scholar
  29. Xu Y, Wang XB, Tian R, Li SQ, Wan L, Li MJ et al (2008) Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides. Appl Surf Sci 254:2431–2435. doi:10.1016/j.apsusc.2007.09.081 CrossRefADSGoogle Scholar
  30. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555. doi:10.1103/PhysRevLett.84.5552 PubMedCrossRefADSGoogle Scholar
  31. Yu MF, Dyer MJ, Ruoff RS (2001) Structure and mechanical flexibility of carbon nanotube ribbons: an atomic force microscopy study. J Appl Phys 89:4554–4557. doi:10.1063/1.1356437 CrossRefADSGoogle Scholar
  32. Zhou GT, Pol VG, Palchik O, Kerner R, Sominki E, Koltypin Y et al (2004) A fast synthesis for Zintl phase compounds of Na3SbTe3, NaSbTe2 and K3SbTe3 by microwave irradiation. J Solid State Chem 177:361–365. doi:10.1016/j.jssc.2003.08.031 CrossRefADSGoogle Scholar
  33. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113. doi:10.1021/nl0342489 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional MoleculesHubei UniversityWuhanPeople’s Republic of China
  3. 3.Key Laboratory of Pesticide and Chemical Biology of Education, College of ChemistryCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations