Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1167–1177 | Cite as

Polyaniline nanoparticles with controlled sizes using a cross-linked carboxymethyl chitin template

  • Tuspon Thanpitcha
  • Anuvat Sirivat
  • Alexander M. Jamieson
  • Ratana Rujiravanit
Research Paper

Abstract

Polyaniline (PANI) nanoparticles were chemically synthesized in the presence of a cross-linked carboxymethyl chitin (CM-chitin) acting as a template. The reaction was performed under acidic conditions and the template was removed after the polymerization of aniline was completed. The morphology of the synthesized PANI was globular with a diameter in the nanometer range. The degree of cross-linking of the CM-chitin played an important role in determining the size of the obtained PANI nanoparticles, which decreased from approximately 392 to 160 nm with increase in concentration of the cross-linking agent, glutaraldehyde, from 0 to 9 μmol, respectively. At a higher glutaraldehyde concentration (18 μmol), an aggregated PANI network was observed due to the incomplete removal of the more highly cross-linked CM-chitin. Molecular characterization (including UV-Visible, FTIR, TGA, and XRD techniques) revealed that the structure of the synthesized PANI nanoparticles is identical to that of conventional PANI. A mechanism is proposed for the formation of PANI nanoparticles in the presence of the cross-linked CM-chitin template.

Keywords

Polyaniline Nanoparticles Cross-linked carboxymethyl chitin Hydrogel Template Conductive polymers 

References

  1. Bai X, Li X, Li N, Zuo Y, Wang L, Li J et al (2007) Synthesis of cluster polyaniline nanorod via a binary oxidant system. Mater Sci Eng C 27:695–699. doi:10.1016/j.msec.2006.06.023 CrossRefGoogle Scholar
  2. Banerjee P, Mandal BM (1995) Blends of HCl-doped polyaniline nanoparticles and poly(vinyl chloride) with extremely low percolation threshold—a morphology study. Synth Met 74:257–261. doi:10.1016/0379-6779(95)03370-Y CrossRefGoogle Scholar
  3. Baxter A, Dillon M, Taylor KDA (1992) Improved method for i.r. determination of the degree of N-acetylation of chitosan. Int J Biol Macromol 14:166–169. doi:10.1016/S0141-8130(05)80007-8 PubMedCrossRefGoogle Scholar
  4. Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met 48:91–97. doi:10.1016/0379-6779(92)90053-L CrossRefGoogle Scholar
  5. Chan HSO, Teo MTB, Khor E, Lim CN (1989) Thermal analysis of conducting polymers part I thermogravimetry of acid-doped polyanilines. J Therm Anal 35:765–774. doi:10.1007/BF02057231 CrossRefGoogle Scholar
  6. Cheng C, Jiang J, Tang R, Xi F (2004) Polyaniline nanostructures doped with mono-sulfonated dendrons via a self-assembly process. Synth Met 145:61–65. doi:10.1016/j.synthmet.2004.04.004 CrossRefGoogle Scholar
  7. Cheng D, Ng S, Chan HSO (2005) Morphology of polyaniline nanoparticles synthesized in triblock copolymers micelles. Thin Solid Films 477:19–23. doi:10.1016/j.tsf.2004.08.105 CrossRefADSGoogle Scholar
  8. Chiou NR, Epstein AJ (2005) A simple approach to control the growth of polyaniline nanofibers. Synth Met 153:69–72. doi:10.1016/j.synthmet.2005.07.145 CrossRefGoogle Scholar
  9. Cho MS, Choi HJ, Ahn WS (2004a) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir 20:202–207. doi:10.1021/la035051z PubMedCrossRefGoogle Scholar
  10. Cho MS, Park SY, Hwang JY, Choi HJ (2004b) Synthesis and electrical properties of polymer composites with polyaniline nanoparticles. Mater Sci Eng C 24:15–18. doi:10.1016/j.msec.2003.09.003 CrossRefGoogle Scholar
  11. Cruz-Silva R, Romero-Garcia J, Angulo-Sanchez JL, Ledezma-Perez A, Arias-Matin E, Moggio I et al (2005) Template-free enzymatic synthesis of electrically conducting polyaniline using soybean peroxidase. Eur Polym J 41:1129–1135. doi:10.1016/j.eurpolymj.2004.11.012 CrossRefGoogle Scholar
  12. Gu DW, Li JS, Li JL, Cai YM, Shen LJ (2005) Polyaniline thin films in situ polymerized under very high pressure. Synth Met 150:175–179. doi:10.1016/j.synthmet.2005.02.009 CrossRefGoogle Scholar
  13. He Y (2005a) Interfacial synthesis and characterization of polyaniline nanofibers. Mater Sci Eng B 122:76–79. doi:10.1016/j.mseb.2005.04.014 CrossRefGoogle Scholar
  14. He Y (2005b) Preparation of polyaniline microspheres with nanostructured surfaces by a solids-stabilized emulsion. Mater Lett 59:2133–2136. doi:10.1016/j.matlet.2005.02.047 CrossRefGoogle Scholar
  15. He HX, Li CZ, Tao NJ (2001) Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method. Appl Phys Lett 78:811–813. doi:10.1063/1.1335551 CrossRefADSGoogle Scholar
  16. Hopkins AR, Lipeles RA, Kao WH (2004) Electrically conducting polyaniline microtube blends. Thin Solid Films 447–448:474–480. doi:10.1016/j.tsf.2003.07.010 CrossRefGoogle Scholar
  17. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855. doi:10.1021/ja0371754 PubMedCrossRefGoogle Scholar
  18. Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructured polyaniline sensors. Chem Eur J 10:1314–1319. doi:10.1002/chem.200305211 CrossRefGoogle Scholar
  19. Jang J, Bae J, Lee K (2005) Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer (Guildf) 46:3677–3684. doi:10.1016/j.polymer.2005.03.030 CrossRefGoogle Scholar
  20. Jing X, Wang Y, Wu D, She L, Guo Y (2006) Polyaniline nanofibers prepared with ultrasonic irradiation. J Polym Sci Part Polym Chem 44:1014–1019. doi:10.1002/pola.21217 CrossRefGoogle Scholar
  21. Jing X, Wang Y, Wu D, Qiang J (2007) Sonochemical synthesis of polyaniline nanofibers. Ultrason Sonochem 14:75–80. doi:10.1016/j.ultsonch.2006.02.001 PubMedCrossRefGoogle Scholar
  22. Kan J, Zhou S, Zhang Y, Patel M (2006) Synthesis and characterization of polyaniline nanoparticles in the presence of magnetic field and samarium chloride. Eur Polym J 42:2004–2012. doi:10.1016/j.eurpolymj.2006.03.003 CrossRefGoogle Scholar
  23. Lei X, Su Z (2007) Novel conducting polyaniline copolymers of aniline and N-phenylglycine. Mater Lett 61:1158–1161. doi:10.1016/j.matlet.2006.06.076 CrossRefGoogle Scholar
  24. Li M, Gou Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715. doi:10.1016/j.biomaterials.2005.11.037 PubMedCrossRefGoogle Scholar
  25. Li X, Zhoa Y, Zhuang T, Wang G, Gu Q (2007) Self-dispersible conducting polyaniline nanofibres synthesized in the presence of β-cyclodextrin. Colloids Surf A Physicochem Eng Asp 295:146–151. doi:10.1016/j.colsurfa.2006.08.044 CrossRefGoogle Scholar
  26. Liu HQ, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855. doi:10.1021/ja0371754 CrossRefGoogle Scholar
  27. Lu X, Yu Y, Chen L, Mao H, Wang L, Zhang W et al (2005) Poly(acrylic acid)-guided synthesis of helical polyaniline microwires. Polymer (Guildf) 46:5329–5333. doi:10.1016/j.polymer.2005.04.019 CrossRefGoogle Scholar
  28. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746. doi:10.1021/cm960166s CrossRefGoogle Scholar
  29. Mazur M, Tagowska M, Palys B, Jakowska K (2003) Template synthesis of polyaniline and poly(2-methoxyaniline) nanotubes: comparison of the formation mechanisms. Electrochem Commun 5:403–407. doi:10.1016/S1388-2481(03)00078-X CrossRefGoogle Scholar
  30. Mi FL, Chen CT, Tseng YC, Kuan CY, Shyu SS (1997) Iron(III)-carboxymethylchitin microsphere for the pH-sensitive release of 6-mercaptopurine. J Control Release 44:19–32. doi:10.1016/S0168-3659(96)01502-7 CrossRefGoogle Scholar
  31. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48:158–164. doi:10.1016/j.polymer.2006.10.045 CrossRefGoogle Scholar
  32. Neoh KG, Kang ET, Tan KL (1990) Thermal degradation of leucoemeraldine, emeraldine base and their complexes. Thermochim Acta 171:279–291. doi:10.1016/0040-6031(90)87027-A CrossRefGoogle Scholar
  33. Palma R, Himmel ME, Brady JW (2000) Calculation of the potential of mean force for the binding of glucose to benzene in aqueous solution. J Phys Chem B 104:7228–7234. doi:10.1021/jp0017341 CrossRefGoogle Scholar
  34. Sahiner N (2007) Hydrogel nanonetworks with functional core–shell structure. Eur Polym J 43:1709–1717. doi:10.1016/j.eurpolymj.2007.01.046 CrossRefGoogle Scholar
  35. Stejskal J, Sapurina I, Trchova M, Konyushenko EN, Holler P (2006) The genesis of polyaniline nanotubes. Polymer (Guildf) 47:8253–8262. doi:10.1016/j.polymer.2006.10.007 CrossRefGoogle Scholar
  36. Strachotova B, Strachota A, Uchman M, Brus SJ, Plestil J, Matejka L (2007) Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer (Guildf) 48:1471–1482. doi:10.1016/j.polymer.2007.01.042 CrossRefGoogle Scholar
  37. Thanpitcha T, Sirivat S, Jameison AM, Rujiravanit R (2006) Preparation and characterization of polyaniline/chitosan blend film. Carbohydr Polym 64:560–568. doi:10.1016/j.carbpol.2005.11.026 CrossRefGoogle Scholar
  38. Ueno T, Yokota S, Kitaoka T, Wariishi H (2007) Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions. Carbohydr Res 342:954–960. doi:10.1016/j.carres.2007.01.017 PubMedCrossRefGoogle Scholar
  39. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett 4:491–496. doi:10.1021/nl035122e CrossRefADSGoogle Scholar
  40. Wang Y, Jing X (2005) Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater 17:227–229. doi:10.1021/cm0488478 CrossRefMathSciNetGoogle Scholar
  41. Wang Y, Jing X (2008) Formation of polyaniline nanofibers: a morphological study. J Phys Chem B 112:1157–1162. doi:10.1021/jp076112v PubMedCrossRefGoogle Scholar
  42. Wang Z, Chen M, Li H (2002) Preparation and characterization of uniform polyaniline nano-fibrils using the anodic aluminum oxide template. Mater Sci Eng A 328:33–38. doi:10.1016/S0921-5093(01)01695-1 CrossRefGoogle Scholar
  43. Wang Y, Jing X, Kong J (2007) Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth Met 157:269–275. doi:10.1016/j.synthmet.2007.03.007 CrossRefGoogle Scholar
  44. Wei D, Kvarnstrom C, Lindfors T, Ivaska A (2006) Polyaniline nanotubules obtained in room-temperature ionic liquids. Electrochem Commun 8:1563–1566. doi:10.1016/j.elecom.2006.07.024 CrossRefGoogle Scholar
  45. Werake LK, Story JG, Bertino MF, Pillalamarri SK, Blum FD (2005) Photolithographic synthesis of polyaniline nanofibres. Nanotechnology 16:2833–2837. doi:10.1088/0957-4484/16/12/017 CrossRefADSGoogle Scholar
  46. Wongpanit P, Sanchavanakit N, Pavasant P, Supaphol P, Tokura S, Rujiravanit R (2005) Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application. Macromol Biosci 5:1001–1012. doi:10.1002/mabi.200500081 PubMedCrossRefGoogle Scholar
  47. Wu CG, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264:1757–1759. doi:10.1126/science.264.5166.1757 PubMedCrossRefADSGoogle Scholar
  48. Xian Y, Liu F, Feng L, Wu F, Wang L, Jin L (2007) Nanoelectrode ensembles based on conductive polyaniline/poly(acrylic acid) using porous sol–gel films as template. Electrochem Commun 9:773–780. doi:10.1016/j.elecom.2006.11.017 CrossRefGoogle Scholar
  49. Xing S, Zhao C, Jing S, Wu Y, Wang Z (2006) Morphology and gas-sensing behavior of in situ polymerized nanostructured polyaniline films. Eur Polym J 42:2730–2735. doi:10.1016/j.eurpolymj.2006.06.014 CrossRefGoogle Scholar
  50. Xiong S, Wang Q, Xia H (2004a) Preparation of polyaniline nanotubes array based on anodic aluminum oxide template. Mater Res Bull 39:1569–1580. doi:10.1016/j.materresbull.2004.01.009 CrossRefGoogle Scholar
  51. Xiong S, Wang Q, Xia H (2004b) Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 146:37–42. doi:10.1016/j.synthmet.2004.06.017 CrossRefGoogle Scholar
  52. Yang C, Chih Y, Cheng H, Chen C (2005) Nanofibers of self-doped polyaniline. Polymer (Guildf) 46:10688–10698. doi:10.1016/j.polymer.2005.09.044 CrossRefGoogle Scholar
  53. Yu Y, Zhihuai S, Chen S, Bian C, Chen W, Xue G (2006) Facile synthesis of polyaniline-sodium alginate nanofibers. Langmuir 22:3899–3905. doi:10.1021/la051911v PubMedCrossRefGoogle Scholar
  54. Zhang Z, Wan M (2002) Composite films of nanostructured polyaniline with poly(vinyl alcohol). Synth Met 128:83–89. doi:10.1016/S0379-6779(01)00669-5 CrossRefGoogle Scholar
  55. Zhang D, Wang Y (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: an overview. Mater Sci Eng B 134:9–19. doi:10.1016/j.mseb.2006.07.037 CrossRefGoogle Scholar
  56. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by nanofiber seeding. J Am Chem Soc 126:4502–4503. doi:10.1021/ja031867a PubMedCrossRefGoogle Scholar
  57. Zhang F, Cheng G, Ying G (2006) Emulsion and macromolecules templated alginate based polymer microspheres. Reactive Funct Polym 66:712–719. doi:10.1016/j.reactfunctpolym.2005.10.022 CrossRefGoogle Scholar
  58. Zhu J, Jiang W (2007) Fabrication of conductive metallized nanostructures from self-assembled amphiphilic triblock copolymer templates: nanospheres, nanowires, nanorings. Mater Chem Phys 101:56–62. doi:10.1016/j.matchemphys.2006.02.014 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tuspon Thanpitcha
    • 1
  • Anuvat Sirivat
    • 1
  • Alexander M. Jamieson
    • 2
  • Ratana Rujiravanit
    • 1
  1. 1.Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical CollegeChulalongkorn UniversityBangkokThailand
  2. 2.Department of Macromolecular ScienceCase Western Reserve UniversityOhioUSA

Personalised recommendations