Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1193–1200 | Cite as

Electrochemical method for the synthesis of silver nanoparticles

  • Rashid A. Khaydarov
  • Renat R. Khaydarov
  • Olga Gapurova
  • Yuri Estrin
  • Thomas Scheper
Research Paper

Abstract

The article deals with a novel electrochemical method of preparing long-lived silver nanoparticles suspended in aqueous solution as well as silver powders. The method does not involve the use of any chemical stabilising agents. The morphology of the silver nanoparticles obtained was studied using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering measurements. Silver nanoparticles suspended in water solution that were produced by the present technique are nearly spherical and their size distribution lies in the range of 2 to 20 nm, the average size being about 7 nm. Silver nanoparticles synthesised by the proposed method were sufficiently stable for more than 7 years even under ambient conditions. Silver crystal growth on the surface of the cathode in the electrochemical process used was shown to result in micron-sized structures consisting of agglomerated silver nanoparticles with the sizes below 40 nm.

Keywords

Silver Nanoparticle PVP Electrochemical synthesis Colloids 

References

  1. Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanopart Res 3:329–336. doi:10.1023/A:1017529712314 CrossRefGoogle Scholar
  2. Biswas P, Wu CY (2005) Nanoparticles and the environment—a critical review paper. J Air Waste Manag Assoc 55:708–746PubMedGoogle Scholar
  3. Bogle KA, Dhole SD, Bhoraskar VN (2006) Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17:3204–3208. doi:10.1088/0957-4484/17/13/021 CrossRefADSGoogle Scholar
  4. Bönnemann H, Richards R (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480. doi:10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-ZCrossRefGoogle Scholar
  5. Feldheim DL, Foss CA (eds) (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New YorkGoogle Scholar
  6. Jeong SH, Hwang YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40:5407–5411. doi:10.1007/s10853-005-4339-8 CrossRefADSGoogle Scholar
  7. Lee HJ, Jeong SH (2004) Bacteriostasis of nanosized colloidal silver on polyester nonwovens. Text Res J 74:442–447. doi:10.1177/004051750407400511 CrossRefGoogle Scholar
  8. Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75:551–556. doi:10.1177/0040517505053952 CrossRefGoogle Scholar
  9. Lee I, Han SW, Kim K (2001) Simultaneous preparation of SERS-active metal colloids and plates by laser ablation. J Raman Spectrosc 32:947–952. doi:10.1002/jrs.781 CrossRefADSGoogle Scholar
  10. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693–2730. doi:10.1021/cr00024a006 CrossRefGoogle Scholar
  11. Li Y, Wu X, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127:3266–3267. doi:10.1021/ja043425k PubMedCrossRefGoogle Scholar
  12. Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat Phys Chem 76(7):1126–1131. doi:10.1016/j.radphyschem.2006.11.001 CrossRefADSGoogle Scholar
  13. Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39:4459–4463. doi:10.1023/B:JMSC.0000034138.80116.50 CrossRefADSGoogle Scholar
  14. Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21:1137–1143. doi:10.1038/nbt1003-1137 PubMedCrossRefGoogle Scholar
  15. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. doi:10.1021/jp0516846 PubMedCrossRefGoogle Scholar
  16. Navaladian S, Viswanathan B, Viswanath RP et al (2007) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2:44–48. doi:10.1007/s11671-006-9028-2 CrossRefADSGoogle Scholar
  17. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 40(22):4128–4158. doi:10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-SCrossRefGoogle Scholar
  18. Reetz MT, Helbig WJ (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7406. doi:10.1021/ja00095a051 CrossRefGoogle Scholar
  19. Rodríguez-Sánchez L, Blanco MC, López-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688. doi:10.1021/jp001761r CrossRefGoogle Scholar
  20. Salata OV (2004) Application of nanoparticles in biology and medicine. J Nanobiotechnol 2:1–12. doi:10.1186/1477-3155-2-3 CrossRefGoogle Scholar
  21. Soete DD, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley, New YorkGoogle Scholar
  22. Solov’ev AY, Potekhina TS, Chernova IA et al (2007) Track membrane with immobilized colloid silver particles. Russ J Appl Chem 80(3):438–442. doi:10.1134/S1070427207030172 CrossRefGoogle Scholar
  23. Starowicz M, Stypuła B, Banas J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8:227–230. doi:10.1016/j.elecom.2005.11.018 CrossRefGoogle Scholar
  24. Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 107:8898–8904. doi:10.1021/jp0349031 CrossRefGoogle Scholar
  25. Yin H, Yamamoto T, Wada Y et al (2004) Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater Chem Phys 83:66–70. doi:10.1016/j.matchemphys.2003.09.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rashid A. Khaydarov
    • 1
  • Renat R. Khaydarov
    • 1
  • Olga Gapurova
    • 1
  • Yuri Estrin
    • 2
  • Thomas Scheper
    • 3
  1. 1.Institute of Nuclear Physics, Uzbekistan Academy of SciencesTashkentUzbekistan
  2. 2.ARC Centre of Excellence for Design in Light Metals, Department of Materials EngineeringMonash University and CSIRO Division of Materials Science and EngineeringClaytonAustralia
  3. 3.Institute of Technical ChemistryLeibniz UniversityHannoverGermany

Personalised recommendations