Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1235–1240 | Cite as

A simple route to prepare stable hydroxyapatite nanoparticles suspension

Brief Communication


A simple ultrasound assisted precipitation method with addition of glycosaminoglycans (GAGs) is proposed to prepare stable hydroxyapatite (HAP) nanoparticles suspension from the mixture of Ca(H2PO4)2 solution and Ca(OH)2 solution. The product was characterized by XRD, FT-IR, TEM, HRTEM and particle size, and zeta potential analyzer. TEM observation shows that the suspension is composed of 10–20 nm × 20–50 nm short rod-like and 10–30 nm similar spherical HAP nanoparticles. The number-averaged particle size of stable suspension is about 30 nm between 11.6 and 110.5 nm and the zeta potential is −60.9 mV. The increase of stability of HAP nanoparticles suspension mainly depends on the electrostatic effect and steric effect of GAGs. The HAP nanoparticles can be easily transported into the cancer cells and exhibit good potential as gene or drug carrier system.


Hydroxyapatite Nanoparticle Stable suspension Ultrasound Synthesis Colloids 


  1. Adamczyk Z, Weroński P (1999) Application of the DLVO theory for particle deposition problems. Adv Coll Interface Sci 83:137–226. doi:10.1016/S0001-8686(99)00009-3 CrossRefGoogle Scholar
  2. Chung RJ, Hsieh MF, Huang KC et al (2005) Anti-microbial hydroxyapatite particles synthesized by a sol–gel route. J Sol-Gel Sci Technol 33:229–239. doi:10.1007/s10971-005-5618-1 CrossRefGoogle Scholar
  3. Ferraz MP, Mateus AY, Sousa JC et al (2007) Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81:994–1004. doi:10.1002/jbm.a.31151 PubMedGoogle Scholar
  4. Fritz H, Maier M, Bayer E (1997) Cationic polystyrene nanoparticles: preparation and characterization of a model drug carrier system for antisense oligonucleotides. J Coll Interface Sci 195:272–278. doi:10.1006/jcis.1997.5172 CrossRefGoogle Scholar
  5. Habelitz S, Pascual L, Durán A (1999) Nitrogen-containing apatite. J Eur Ceram Soc 19:2685–2694. doi:10.1016/S0955-2219(99)00048-5 CrossRefGoogle Scholar
  6. Han YC, Li SP, Wang XY et al (2004) Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method. Mater Res Bull 39:25–32. doi:10.1016/j.materresbull.2003.09.022 CrossRefGoogle Scholar
  7. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, BaselGoogle Scholar
  8. Li H, Khor KA, Chow V et al (2007) Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite. J Biomed Mater Res Part A 82:296–303CrossRefGoogle Scholar
  9. Liu JB, Li KW, Wang H et al (2004) Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem Phys Lett 396:429–432. doi:10.1016/j.cplett.2004.08.094 CrossRefADSGoogle Scholar
  10. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556. doi:10.1016/j.pmatsci.2005.08.003 CrossRefGoogle Scholar
  11. Nakamura S, Isobe T, Senna M (2001) Hydroxyapatite nano sol prepared via a mechanochemical route. J Nanopart Res 3:57–61. doi:10.1023/A:1011407814795 CrossRefGoogle Scholar
  12. Ninham BW (1999) On progress in forces since the DLVO theory. Adv Coll Interface Sci 83:1–17. doi:10.1016/S0001-8686(99)00008-1 CrossRefGoogle Scholar
  13. Ong HT, Loo JSC, Boey FYC et al (2008) Exploiting the high-affinity phosphonate-hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J Nanopart Res 10:141–150. doi:10.1007/s11051-007-9239-1 CrossRefGoogle Scholar
  14. Pang SW, Park HY, Jang YS et al (2002) Effects of charge density and particle size of poly(styrene/(dimethylamino) ethyl methacrylate) nanoparticle for gene delivery in 293 cells. Coll Surf B Biointerfaces 26:213–222. doi:10.1016/S0927-7765(01)00335-6 CrossRefGoogle Scholar
  15. Ramesh S, Tan CY, Sopyan I et al (2007) Consolidation of nanocrystalline hydroxyapatite powder. Sci Technol Adv Mater 8:124–130. doi:10.1016/j.stam.2006.11.002 CrossRefGoogle Scholar
  16. Rehman I, Bonfield W (1997) Characterization of hydroxyapatite and carbonated hydroxyapatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med 8:1–4. doi:10.1023/A:1018570213546 PubMedCrossRefGoogle Scholar
  17. Roy I, Mitra S, Maitra A et al (2003) Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm 250:25–33. doi:10.1016/S0378-5173(02)00452-0 PubMedCrossRefGoogle Scholar
  18. Sun YX, Guo GS, Tao DL et al (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377. doi:10.1016/j.jpcs.2006.11.026 CrossRefADSGoogle Scholar
  19. Sung YM, Lee JC, Yang JW (2004) Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J Cryst Growth 262:467–472. doi:10.1016/j.jcrysgro.2003.10.001 CrossRefADSGoogle Scholar
  20. Wang YJ, Lai C, Wei K et al (2006) Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology 17:4405–4412. doi:10.1088/0957-4484/17/17/020 CrossRefADSGoogle Scholar
  21. Zhang YJ, Lu JJ (2007) A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J Nanopart Res 9:589–594. doi:10.1007/s11051-006-9177-3 CrossRefGoogle Scholar
  22. Zhou ZH, Zhou PL, Yang SP et al (2007) Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Mater Res Bull 42:1611–1618. doi:10.1016/j.materresbull.2006.11.041 CrossRefGoogle Scholar
  23. Zhu SH, Huang BY, Zhou KC et al (2004) Hydroxyapatite nanoparticles as a novel gene carrier. J Nanopart Res 6:307–311. doi:10.1023/B:NANO.0000034721.06473.23 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Biomedical Materials and Engineering CenterWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations