Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1137–1144 | Cite as

Synthesis of NiAu alloy and core–shell nanoparticles in water-in-oil microemulsions

Research Paper

Abstract

NiAu alloy nanoparticles with various Ni/Au molar ratios were synthesized by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system. They had a face-centered cubic structure and a mean diameter of 6–13 nm, decreasing with increasing Au content. As Au nanoparticles did, they showed a characteristic absorption peak at about 520 nm but the intensity decreased with increasing Ni content. Also, they were nearly superparamagnetic, although the magnetization decreased significantly with increasing Au content. Under an external magnetic field, they could be self-organized into the parallel lines. In addition, the core–shell nanoparticles, Ni3Au1@Au, were prepared by the Au coating on the surface of Ni3Au1 alloy nanoparticles. By increasing the hydrogen tetrachloroaurate concentration for Au coating, the thickness of Au shells could be raised and led to an enhanced and red-shifted surface plasmon absorption.

Keywords

NiAu Alloy Core–shell Nanoparticles Microemulsion Optical Nanocomposite 

References

  1. Bergemann C, Muller-Schulte D, Oster J, Brassard L, Lubbe AS (1999) Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Magn Magn Mater 194:45–52. doi:10.1016/S0304-8853(98)00554-X CrossRefADSGoogle Scholar
  2. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22. doi :10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-NCrossRefGoogle Scholar
  3. Chen DH, Liao MH (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal, B Enzym 16:283–291. doi:10.1016/S1381-1177(01)00074-1 CrossRefGoogle Scholar
  4. Chiang IC, Chen DH (2007) Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater 17:1311–1316. doi:10.1002/adfm.200600525 CrossRefGoogle Scholar
  5. Esumi K, Shiratori M, Ishizuka H, Tano T, Torigoe K, Meguro K (1991) Preparation of bimetallic palladium-platinum colloids in organic solvent by solvent extraction-reduction. Langmuir 7:457–459. doi:10.1021/la00051a007 CrossRefGoogle Scholar
  6. Han SW, Kim Y, Kim K (1998) Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J Colloid Interface Sci 208:272–278. doi:10.1006/jcis.1998.5812 PubMedCrossRefGoogle Scholar
  7. Hofman-Caris CHM (1994) Polymers at the surface of oxide nanoparticles. N J Chem 18:1087–1096Google Scholar
  8. Knauth M, Egelhof T, Roth SU, Wirtz CR, Sartor K (2001) Monocrystalline iron oxide nanoparticles: possible solution to the problem of surgically induced intracranial contrast enhancement in intraoperative MR imaging. AJNR Am J Neuroradiol 22:99–102PubMedGoogle Scholar
  9. Lahr DL, Ceyer ST (2006) Catalyzed CO oxidation at 70 K on an extended Au/Ni surface alloy. J Am Chem Soc 128:1800–1801. doi:10.1021/ja053866j PubMedCrossRefGoogle Scholar
  10. Lee CC, Chen DH (2006) Large-scale synthesis of Ni–Ag core–shell nanoparticles with magnetic, optical and anti-oxidation properties. Nanotechnology 17:3094–3099. doi:10.1088/0957-4484/17/13/002 CrossRefADSGoogle Scholar
  11. Lee CC, Chen DH (2007) Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl Phys Lett 90:193102. doi:10.1063/1.2731706 CrossRefADSGoogle Scholar
  12. Liao MH, Chen DH (2001) Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol Lett 23:1723–1727. doi:10.1023/A:1012485221802 CrossRefGoogle Scholar
  13. Liao MH, Chen DH (2002) Preparation and characterization of a novel magnetic nano-adsorbent. J Mater Chem 12:3654–3659. doi:10.1039/b207158d CrossRefGoogle Scholar
  14. Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533. doi:10.1021/jp990387w CrossRefGoogle Scholar
  15. Lu DL, Domen K, Tanaka KI (2002) Electrodeposited Au-Fe, Au-Ni, and Au-Co alloy nanoparticles from aqueous electrolytes. Langmuir 18:3226–3232. doi:10.1021/la010715v CrossRefGoogle Scholar
  16. Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101:7033–7037. doi:10.1021/jp9638090 CrossRefGoogle Scholar
  17. Mykhaylyk O, Cherchenko A, Ilkin A, Dudchenko N, Ruditsa V, Novoseletz M et al (2001) Glial brain tumor targeting of magnetite nanoparticles in rats. J Magn Magn Mater 225:241–247. doi:10.1016/S0304-8853(00)01264-6 CrossRefADSGoogle Scholar
  18. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158. doi :10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-SCrossRefGoogle Scholar
  19. Reetz MT, Helbig W, Quaiser SA (1995) Electrochemical preparation of nanostructural bimetallic clusters. J Chem Mater 7:2227–2228. doi:10.1021/cm00060a004 CrossRefGoogle Scholar
  20. Remita S, Mostafavi M, Delcourt MO (1996) Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis. Radiat Phys Chem 47:275–279. doi:10.1016/0969-806X(94)00172-G CrossRefADSGoogle Scholar
  21. Tsaur BY, Maenpaa M (1981) Characteristics of ion-induced supersaturated Au-Ni alloy films. J Appl Phys 52:728–736. doi:10.1063/1.328754 CrossRefADSGoogle Scholar
  22. Wang Y, Toshima N (1997) Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B 101:5301–5306. doi:10.1021/jp9704224 CrossRefGoogle Scholar
  23. Wang J, Liu G, Merkoçi A (2003) Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Anal Chim Acta 482:149–155. doi:10.1016/S0003-2670(03)00206-X CrossRefGoogle Scholar
  24. Wooley KL (2000) Shell crosslinked polymer assemblies: nanoscale constructs inspired from biological systems. J Polym Sci A Polym Chem 38:1397–1407. doi :10.1002/(SICI)1099-0518(20000501)38:9<1397::AID-POLA1>3.0.CO;2-NCrossRefGoogle Scholar
  25. Wu ML, Chen DH, Huang TC (2001a) Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions. Chem Mater 13:599–606. doi:10.1021/cm0006502 CrossRefADSGoogle Scholar
  26. Wu ML, Chen DH, Huang TC (2001b) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883. doi:10.1021/la010060y CrossRefGoogle Scholar
  27. Yonezawa T, Toshima N (1995) Mechanistic consideration of formation of polymer-protected nanoscopic bimetallic clusters. J Chem Soc, Faraday Trans 91:4111–4119. doi:10.1039/ft9959104111 CrossRefGoogle Scholar
  28. Zhong CJ, Maye MM (2001) Core–shell assembled nanoparticles as catalysts. Adv Mater 13:1507–1511. doi :10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-#CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations