Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1117–1127 | Cite as

Effect of voids and pressure on melting of nano-particulate and bulk aluminum

Research Paper

Abstract

Molecular dynamics simulations are performed using isobaric–isoenthalpic (NPH) ensembles to study the effect of internal defects in the form of voids on the melting of bulk and nano-particulate aluminum in the size range of 2–9 nm. The main objectives are to determine the critical interfacial area required to overcome the free energy barrier for the thermodynamic phase transition, and to explore the underlying mechanisms for defect-nucleated melting. The inter-atomic interactions are captured using the Glue potential, which has been validated against the melting temperature and elastic constants for bulk aluminum. A combination of structural and thermodynamic parameters, such as the potential energy, Lindemann index, translational-order parameter, and radial-distribution functions, are employed to characterize the melting process. The study considers a variety of void shapes and sizes, and results are compared with perfect crystals. For nano aluminum particles smaller than 9 nm, the melting temperature is size dependent. The presence of voids does not impact the melting properties due to the dominancy of nucleation at the surface, unless the void size exceeds a critical value beyond which lattice collapse occurs. The critical void size depends on the particle dimension. The effect of pressure on the particulate melting is found to be insignificant in the range of 1–300 atm. The melting behavior of bulk aluminum is also examined as a benchmark. The critical interfacial area required for the solid–liquid phase transition is obtained as a function of the number of atoms considered in the simulation. Imperfections such as voids reduce the melting point. The ratio between the structural and thermodynamic melting points is 1.32. This value is comparable to the ratio of 1.23 for metals like copper.

Keywords

Aluminum Voids Nanoparticles Melting Molecular dynamics Modeling and simulation 

Abbreviations

Al

Aluminum

f

Ratio of structural to thermodynamic melting point

rij

Distance between two atoms

U

Potential energy

\( \varphi \)

Potential function

\( \rho \)

Density function

References

  1. Agarwal PM, Rice BM, Thompson DL (2003) Molecular dynamics study of effects of voids and pressure in defect nucleated melting simulations. J Chem Phys 118:9680–9688. doi:10.1063/1.1570815 CrossRefADSGoogle Scholar
  2. Alavi S, Thompson DL (2006) Molecular dynamics simulations of melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523. doi:10.1021/jp053318s PubMedCrossRefGoogle Scholar
  3. Allard LF, Voelkl E, Kalakkad DS, Datye AK (1994) Electron holography reveals the internal structure of palladium nano-particles. J Mater Sci 29:5612–5614. doi:10.1007/BF00349955 CrossRefADSGoogle Scholar
  4. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford Science, OxfordGoogle Scholar
  5. Anderson HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384. doi:10.1063/1.439486 CrossRefADSGoogle Scholar
  6. Bucher P, Ernst L, Dryer FL, Yetter RA, Parr TP, Hanson DM (2000) Detailed studies on the flame structure of aluminum particle combustion. In: Yang V, Brill TB, Ren WZ (eds) Solid propellant chemistry, combustion and motor interior ballistics, vol 185. Progress in Astronautics and Aeronautics AIAA, Reston, VA, pp 689–722Google Scholar
  7. Buffat P, Borel JP (1976) Size effect of the melting temperature of gold particles. Phys Rev A 13:2287–2298. doi:10.1103/PhysRevA.13.2287 CrossRefADSGoogle Scholar
  8. Dreizin EL (2003) Effect of phase changes on metal particle combustion processes. Combust Explos Shock Waves 39:681–693. doi:10.1023/B:CESW.0000007682.37878.65 CrossRefGoogle Scholar
  9. Eckert J, Holzer JC, Ahn CC, Fu Z, Johnson WL (1993) Melting behavior of nanocrystalline aluminum powders. Nanostruct Mater 2:407–413. doi:10.1016/0965-9773(93)90183-C CrossRefGoogle Scholar
  10. Ercolessi F, Adams JB (1994) Interatomic potentials from first principles calculations: the force-matching method. Europhys Lett 26:583–588. doi:10.1209/0295-5075/26/8/005 CrossRefADSGoogle Scholar
  11. Gezelter JD, Rabani E, Berne BJ (1997) Can imaginary instantaneous normal mode frequencies predict barriers to self-diffusion? J Chem Phys 107:4618–4627. doi:10.1063/1.474822 CrossRefADSGoogle Scholar
  12. Hyuk I, Jeong U, Xia Y (2005) Polymer hollow particles with controllable holes in their surfaces. Nat Mater 4:671–675. doi:10.1038/nmat1448 CrossRefADSGoogle Scholar
  13. Ilyin AP, Gromov AA, Vereshchagin VI, Popenko EM, Surgin VA, Lehn H (2001) Combustion of agglomerated ultrafine aluminum powders in air. Combust Explos Shock Waves 37:664–669. doi:10.1023/A:1012928130644 CrossRefGoogle Scholar
  14. Kwon YS, Gromov AA, Ilyin AP, Popenko EM, Rim GH (2003) The mechanism of combustion of superfine aluminum powders. Combust Flame 133:385–391. doi:10.1016/S0010-2180(03)00024-5 CrossRefGoogle Scholar
  15. Lutsko JF, Wolf D, Phillpot SR, Yip S (1989) Molecular dynamics study of lattice-defect nucleated melting in metals using an embedded-atom-method potential. Phys Rev B 40:2841–2855. doi:10.1103/PhysRevB.40.2841 CrossRefADSGoogle Scholar
  16. Marian J, Knap J, Ortiz M (2004) Nanovoid cavitation by dislocation emission in aluminum. Phys Rev Lett 93:165503Google Scholar
  17. Marian J, Knap J, Ortiz M (2005) Nanovoid deformation in aluminum under simple shear. Acta Mater 53:2893–2900. doi:10.1016/j.actamat.2005.02.046 CrossRefGoogle Scholar
  18. Phillpot SR, Lutsko JF, Wolf D, Yip S (1989) Molecular dynamics study of lattice-defect-nucleated melting in silicon. Phys Rev B 40:2831–2840. doi:10.1103/PhysRevB.40.2831 CrossRefADSGoogle Scholar
  19. Pivkina A, Ulyanova P, Frolov Y, Zavyalov S, Schoonman J (2004) Nanomaterials for heterogeneous combustion. Propellants Explos Pyrotech 29:39–48. doi:10.1002/prep.200400025 CrossRefGoogle Scholar
  20. Plimpton S (1995) Fast parallel algorithms for short range molecular dynamics. J Comput Phys 117:1–19. doi:10.1006/jcph.1995.1039 MATHCrossRefADSGoogle Scholar
  21. Puri P, Yang V (2007) Effect of particle size on melting of aluminum at nano scales. J Phys Chem C 111:11776–11783. doi:10.1021/jp0724774 CrossRefGoogle Scholar
  22. Rai A, Lee D, Park K, Zachariah MR (2004) Importance of phase change of aluminum in oxidation of aluminum nanoparticles. J Phys Chem B 108:14793–14795. doi:10.1021/jp0373402 CrossRefGoogle Scholar
  23. Rozenband VI, Vaganova NI (1992) A strength model of heterogeneous ignition of metal particles. Combust Flame 88:113–118. doi:10.1016/0010-2180(92)90011-D CrossRefGoogle Scholar
  24. Shimomura Y, Moritaki Y (1981) On the important effect of water vapor in the atmosphere on void formation in quenched pure aluminum. Jpn J Appl Phys 20:2287–2293CrossRefADSGoogle Scholar
  25. Solca J, Anthony JD, Steinebrunner G, Kirchner B, Huber H (1997) Melting curves for argon calculated from pure theory. J Chem Phys 224:253–261. doi:10.1016/S0301-0104(97)00317-0 CrossRefGoogle Scholar
  26. Solca J, Dyson AJ, Steinebrunner G, Kirchner B, Huber H (1998) Melting curves for neon calculated from pure theory. J Chem Phys 108:4107–4111. doi:10.1063/1.475808 CrossRefADSGoogle Scholar
  27. Trunov MA, Schoenitz M, Dreizin EL (2006) Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theory Model 10:603–623. doi:10.1080/13647830600578506 MATHCrossRefGoogle Scholar
  28. Wronski CRM (1967) The size dependence of the melting point of small particles of tin. Br J Appl Phys 18:1731–1737. doi:10.1088/0508-3443/18/12/308 CrossRefADSGoogle Scholar
  29. Yetter R (2008) http://www.neem.psu.edu/
  30. Zhou Y, Karplus M, Ball KD, Berry RS (2002) The distance fluctuation criterion for melting: Comparison of square well and More potential modes for clusters and homo polymers. J Chem Phys 116:2323–2329. doi:10.1063/1.1426419 CrossRefADSGoogle Scholar
  31. Zou Y, Chen L (2005) Pressure dependence of the melting temperature of aluminum. Phys Stat Sol (b) 242:2412–2416CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations