Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 743–747 | Cite as

Fabrication of segmented nanofibers by template wetting of multilayered alternating polymer thin films

Brief Communication


Segmented polystyrene (PS) and poly-methyl methacrylate (PMMA) nanofibers were fabricated by wetting nanoporous alumina templates with multilayered polymer thin films. The order and thickness of the polymers within the thin films affected the resulting nanofiber morphology, PS and PMMA segment properties, and created unique core-shell structure in the PMMA segments. The core-shell structure suggests a complex wetting phenomenon. Fabrication of polymer nanostructures by wetting of layered thin films opens the arena of multifunctional, one-dimensional, polymer nanostructures with segments having individual and specific functionalities.


Heterogeneous Nanofibers Polymers Thin films Wetting Core-shell structure Nanomanufacturing 


  1. Greiner A, Wendorff JH, Yarin AL et al (2006) Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol 71:387–393PubMedCrossRefGoogle Scholar
  2. Harris M, Appel G, Ade H (2003) Surface morphology of annealed polystyrene and poly(methyl methacrylate) thin film blends and bilayers. Macromolecules 36:3307–3314CrossRefGoogle Scholar
  3. Huibers PD, Shah DO (1997) Multispectral determination of soap film thickness. Langmuir 13:5995–5998CrossRefGoogle Scholar
  4. Kriha O, Zhao L, Pippel E et al (2007) Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting. Adv Funct Mater 17:1327–1332CrossRefGoogle Scholar
  5. Kriha O, Goring P, Milbradt M et al (2008) Polymer tubes with longitudinal composition gradient by face-to-face wetting. Chem Mater 20:1076–1081CrossRefGoogle Scholar
  6. Lau ST, Zheng RK, Chan HL et al (2006) Preparation and characterization of poly(vinylidene fluoride-trifluoroethylene) copolymer nanowires and nanotubes. Mater Lett 60:2357–2361CrossRefGoogle Scholar
  7. Moon SI, McCarthy TJ (2003) Template synthesis and self-assembly of nanoscopic polymer “pencils”. Macromolecules 36:4253–4255CrossRefGoogle Scholar
  8. Sohn BH, Yun SH (2002) Perpendicular lamellae induced at the interface of neutral self-assembled monolayers in thin diblock copolymer films. Polymer 43:2507–2512CrossRefGoogle Scholar
  9. Steinhart M, Wendorff JH, Greiner A et al (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997PubMedCrossRefGoogle Scholar
  10. Steinhart M, Wehrspohn RB, Gosele U et al (2004) Nanotubes by template wetting: a modular assembly system. Angew Chem Int Ed 43:1334–1344CrossRefGoogle Scholar
  11. Sun Y, Steinhart M, Zschech D et al (2005) Diameter-dependence of the morphology of PS-b-PMMA nanorods confined within ordered porous alumina templates. Macromol Rapid Commun 26:369–375CrossRefGoogle Scholar
  12. Tao SL, Desai TA (2007) Aligned arrays of biodegradable poly(ε-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett 7:1463–1468PubMedCrossRefGoogle Scholar
  13. Trent JS, Scheinbeim JI, Couchman PR (1983) Ruthenium tetraoxide staining of polymers for electron microscopy. Macromolecules 16:589–598 CrossRefGoogle Scholar
  14. Walheim S, Boltau M, Mlynek J et al (1997) Structure formation via polymer demixing in spin-cast films. Macromolecules 30:4995–5003CrossRefGoogle Scholar
  15. Zhang M, Dobriyal P, Chen J et al (2006) Wetting transition in cylindrical alumina nanopores with polymer melts. Nano Lett 6:1075–1079CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations