Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1185–1192 | Cite as

Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles

Research Paper


Lanthanum ion (La3+)-substituted garnet nanoparticles Y3−xLaxFe5O12 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) were fabricated by a sol–gel method. Their crystalline structures and magnetic properties were investigated by using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectrum. The XRD results show that samples of Y3−xLaxFe5O12 (0.0 ≤ x ≤ 0.8) are all single phase and the sizes of particles range from 32 to 65 nm. Those of Y2LaFe5O12 consisted of peaks from garnet and LaFeO3 structures. Compared to pure YIG, the saturation magnetization is larger when the La concentration x = 0.2. However, with increasing La concentration (x), it decreases obviously. Meanwhile, may be due to the enhancement of the surface spin effects, the saturation magnetization rises as the particle size is increased. Different from the pure YIG, the Mössbauer spectra of Y2.8La0.2Fe5O12 and Y2.2La0.8Fe5O12 are composed of four sets of six-line hyperfine patterns. The results tell us that the substitution of La3+ ions with large ionic radius (1.061 Å) will give rise to a microscopic structure distortion of the a- and d-sites to different degrees, and the Zeeman sextets from a- and d-sites begin to split into two sub-sextets, which is helpful to explain the phenomenon observed in the study of the magnetic property.


Nanoparticles Yttrium iron garnet La3+ Magnetic, Ferrite, Sol–gel method 


  1. Batlle X, Obradors X, Medarde M, Rodríguez-Carvajal J, Pernet M, Vallet-Regí M (1993) Surface spin canting in BaFe12O19 fine particles. J Magn Magn Mater 124:228–238. doi:10.1016/0304-8853(93)90092-G CrossRefADSGoogle Scholar
  2. Cheng ZJ, Yang H (2007a) Synthesis and magnetic properties of Sm–Y3Fe5O12 nanoparticles. Physica E 39:198–202. doi:10.1016/j.physe.2007.04.003 CrossRefADSGoogle Scholar
  3. Cheng ZJ, Yang H (2007b) Magnetic properties of Nd-Y3Fe5O12 nanoparticles. J Mater Sci: Mater Electron 18:1065–1069. doi:10.1007/s10854-007-9130-y CrossRefGoogle Scholar
  4. Cheng ZJ, Yang H, Yu LX, Cui YM, Feng SH (2006) Preparation and magnetic properties of Y3Fe5O12 nanoparticles doped with the gadolinium oxide. J Magn Magn Mater 302:259–262. doi:10.1016/j.jmmm.2005.09.015 CrossRefADSGoogle Scholar
  5. Cheng ZJ, Yang H, Cui YM, Yu LX, Zhao XP, Feng SH (2007) Synthesis and magnetic properties of Y3−xDyxFe5O12 nanoparticles. J Magn Magn Mater 308:5–9CrossRefADSGoogle Scholar
  6. Espinosa GP (1962) Crystal chemical study of the rare-earth iron garnets. J Chem Phys 37:2344–2347. doi:10.1063/1.1733008 CrossRefADSGoogle Scholar
  7. Han DH, Wang JP, Luo HL (1994) Crystallite size effect on saturation magnetization of fine ferromagnetic particles. J Magn Magn Mater 136:176–182. doi:10.1016/0304-8853(94)90462-6 CrossRefADSGoogle Scholar
  8. Kim CS, Uhm YR, Kim SB, Lee JG (2000) Magnetic properties of Y3−xLaxFe5O12 thin films grown by a sol-gel method. J Magn Magn Mater 215–216:551–553. doi:10.1016/S0304-8853(00)00217-1 CrossRefGoogle Scholar
  9. Kim CS, Min BK, Kim SJ, Yoon SR, Uhm YR (2003) Crystallographic and magnetic properties of Y3Fe5−XAlXO12. J Magn Magn Mater 254–255:553–555. doi:10.1016/S0304-8853(02)00864-8 CrossRefGoogle Scholar
  10. Lataifeh MS, Lehlooh AD (1996) Mossbauer spectroscopy study of substituted yttrium iron garnets. Solid State Commun 9:805–807. doi:10.1016/0038-1098(95)00645-1 CrossRefADSGoogle Scholar
  11. Lataifeh MS, Mahmood S, Thomas MF (2002) Mössbauer spectroscopy study of substituted rare-earth iron garnets at low temperature. Physica B 321:143–148. doi:10.1016/S0921-4526(02)00840-2 CrossRefADSGoogle Scholar
  12. Lee YB, Chae KP, Lee SH (2001) Mössbauer study of substituted YIG, Y-Gd-Fe-In-O system. J Phys Chem Solids 62:1335–1340. doi:10.1016/S0022-3697(01)00031-2 CrossRefADSGoogle Scholar
  13. Ristić M, Felner I, Nowik I, Popović S, Czakó-Nagy I, Musić S (2000) Ferritization of Y3+ and Nd3+ ions in the solid state. J Alloy Compd 308:301–308. doi:10.1016/S0925-8388(00)00979-8 CrossRefGoogle Scholar
  14. Ristić M, Nowik I, Popović S, Felner S, Musić S (2003) Influence of synthesis procedure on the YIG formation. Mater Lett 57:2584–2590. doi:10.1016/S0167-577X(02)01315-0 CrossRefGoogle Scholar
  15. Sáchez RD, Rivas J, Vaqueiro P, López-Quintela MA, Caeiro D (2002) Particle size effect on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J Magn Magn Mater 247:92–98. doi:10.1016/S0304-8853(02)00170-1 CrossRefADSGoogle Scholar
  16. Vaqueiro P, López-Quintela MA (1997) Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-gel method. Chem Mater 9:2836–2841. doi:10.1021/cm970165f CrossRefGoogle Scholar
  17. Vaqueiro P, López-Quintela MA, Rivas J, Greneche JM (1997) Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process. J Magn Magn Mater 16:56–68. doi:10.1016/S0304-8853(96)00728-7 CrossRefADSGoogle Scholar
  18. Waerenborgh JC, Rojas DP, Shaula AL, Kharton VV, Marques FMB (2004) Defect formation in Gd3Fe5O12-based garnets: a Mössbauer spectroscopy study. Mater Lett 58:3432–3436. doi:10.1016/j.matlet.2004.05.081 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zhongjun Cheng
    • 1
  • Yuming Cui
    • 1
  • Hua Yang
    • 1
  • Yan Chen
    • 2
  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations