Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 725–729 | Cite as

A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes

  • F. Estaline Amitha
  • A. Leela Mohana Reddy
  • S. Ramaprabhu
Brief Communication

Abstract

A supercapacitor using non-aqueous electrolyte and multiwalled carbon nanotube (MWNTs) nanocomposite electrodes has been designed with polymer and metal oxide loaded carbon nanotubes as electrodes. These nanocomposites were coated on the carbon paper with Nafion solution to obtain the flexible electrodes. Carbon paper with the nanocomposite coating was pressed on either sides of the Nafion membrane, which acts both as a separator and as an electrolyte. The performance of asymmetric assembly of electrochemical double layer capacitor with polymer- and metal oxide-dispersed MWNTs composite materials with non-aqueous Nafion electrolyte is compared with symmetric assemblies, and the results are discussed.

Keywords

Solid Nafion electrolyte MWNTs PANI/MWNTs and TiO2/MWNTs Asymmetric supercapacitor Nanocomposites 

References

  1. An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) High-capacitance supercapacitor using a nanocomposite electrode of single walled carbon nanotube and polypyrrole. J Electrochem Soc 149:A1058–A1062. doi:10.1149/1.1491235 CrossRefGoogle Scholar
  2. Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan SP et al (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376:207–213. doi:10.1016/S0009-2614(03)00946-1 CrossRefADSGoogle Scholar
  3. Beguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17:2380–2384. doi:10.1002/adma.200402103 CrossRefGoogle Scholar
  4. Chatterjee AK, Sharon M, Banerjee R, Neumann-Spallart M (2003) CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors. Electrochim Acta 48:3439–3446. doi:10.1016/S0013-4686(03)00427-4 CrossRefGoogle Scholar
  5. Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF (2002) Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40:1193–1197. doi:10.1016/S0008-6223(01)00266-4 CrossRefGoogle Scholar
  6. Dong B, He B-L, Xu C-L, Li H-L (2007) Preparation and electrochemical characterization of polyaniline multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B 143:7–13. doi:10.1016/j.mseb.2007.06.017 CrossRefGoogle Scholar
  7. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423. doi:10.1063/1.1290146 CrossRefADSGoogle Scholar
  8. Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Beguin F (2002) Nanotubular materials as electrodes for supercapacitors. Fuel Process Technol 77:213–219. doi:10.1016/S0378-3820(02)00078-4 CrossRefGoogle Scholar
  9. Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506. doi:10.1016/j.electacta.2004.10.078 CrossRefGoogle Scholar
  10. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. doi:10.1016/S0013-4686(00)00354-6 CrossRefGoogle Scholar
  11. Leela Mohana Reddy A, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111:7727–7734. doi:10.1021/jp069006m CrossRefGoogle Scholar
  12. Portet C, Taberna PL, Simon P, Flahaut E (2005) Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte. J Power Sources 139:371–378. doi:10.1016/j.jpowsour.2004.07.015 CrossRefGoogle Scholar
  13. Shaijumon MM, Rajalakshmi N, Ryu H, Ramaprabhu S (2005) Synthesis of multi-walled carbon nanotubes in high yield using Mm based AB2 alloy hydride catalysts and the effect of purification on their hydrogen adsorption properties. Nanotechnology 16:518–524. doi:10.1088/0957-4484/16/4/031 CrossRefADSGoogle Scholar
  14. Song HK, Hwang HY, Lee KH, Dao LH (2000) The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochim Acta 45:2241–2257. doi:10.1016/S0013-4686(99)00436-3 CrossRefGoogle Scholar
  15. Wang GX, Zhang BL, Yu ZL, Qu MZ (2005) Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ion 176:1169–1174. doi:10.1016/j.ssi.2005.02.005 CrossRefGoogle Scholar
  16. Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174. doi:10.1016/j.cplett.2004.02.071 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Estaline Amitha
    • 1
  • A. Leela Mohana Reddy
    • 1
  • S. Ramaprabhu
    • 1
  1. 1.Alternative Energy Technology Laboratory, Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations