Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1043–1051 | Cite as

Morphology and magnetic properties of FexCo1−x/CoyFe3−yO4 nanocomposites prepared by surfactants-assisted-hydrothermal process

Research Paper

Abstract

Recently, we have demonstrated the successful synthesis of FexCo1−x/CoyFe3−yO4 nanocomposites with various alkaline solutions by using surfactants-assisted-hydrothermal (SAH) process. In this article, the synthesis of FexCo1−x/CoyFe3−yO4 nanocomposites with their sizes varying between 20 nm and 2 μm was reported. X-ray powder diffraction (XRD) analyses showed that the surfactants, pH, precipitator, and temperature of the system play important roles in the nucleation and growth processes. The magnetic properties tested by vibrating sample magnetometer (VSM) at room temperature exhibit ferromagnetic behavior of the nanocomposites. These FexCo1−x/CoyFe3−yO4 nanocomposites may have a potential application as magnetic carriers for drug targeting because of their excellent soft-magnetic properties.

Keywords

Structure Magnetic properties Morphology Disproportionation Hydrothermal Nanocomposites Colloids 

References

  1. Berkowitz AE, Shuele WJ, Flanders PJ (1968) Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J Appl Phys 39:1261–1263CrossRefADSGoogle Scholar
  2. Caillof T, Pourroy G, Stuerga D (2004) Microwave hydrothermal flash synthesis of nanocomposites Fe–Co cobalt alloy/cobalt ferrite. J Solid State Chem 177:3843–3848. doi:10.1016/j.jssc.2004.06.009 CrossRefADSGoogle Scholar
  3. Cornell RM, Schwertmann U (1996) The iron oxide: structure, properties, reactions, occurrence and uses. VCH, WeinheimGoogle Scholar
  4. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, London, UKGoogle Scholar
  5. Estournes C, Cornu N, Guille JL (1994) Reduction of copper in soda-lime silicate glass by hydrogen. J Non-Cryst Solids 170:287–294. doi:10.1016/0022-3093(94)90058-2 CrossRefADSGoogle Scholar
  6. Fröba M, Köhn R, Bouffaud G, Richard O, Van Tendeloo G (1999) Fe2O3 nanoparticles within mesoporous MCM-48 silica. In situ formation and characterization. Chem Mater 11:2858–2865CrossRefGoogle Scholar
  7. Hunter RJ (1987) Foundations of colloid science, vol 1. Oxford University Press, Oxford, p 420Google Scholar
  8. Läkamp S, Pourroy G (1996) Influence of Co/Fe ratio on the synthesis of cobalt containing metal–spinel composites by using iron disproportionation. J Solid State Chem 123:109–114CrossRefGoogle Scholar
  9. Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128:968–975. doi:10.1021/ja056609n PubMedCrossRefGoogle Scholar
  10. Lopez-Quintela MA, Rivas J (1993) Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles. J Colloid Interface Sci 158:446–451. doi:10.1006/jcis.1993.1277 CrossRefGoogle Scholar
  11. Martinez B, Obradors X, Balcells L, Rouanet A, Monty C (1998) Low temperature surface spin–glass transition in γ-Fe2O3 nanoparticles. Phys Rev Lett 80:181–184. doi:10.1103/PhysRevLett.80.181 CrossRefADSGoogle Scholar
  12. Osso D, Tillement O, Le Caer G, Mocellin AJ (1998) Alumina-alloy nanocomposite powders by mechanosynthesis. Mater Sci 33:3109–3119. doi:10.1023/A:1004343806144 CrossRefADSGoogle Scholar
  13. Parker FT, Foster MW, Margulies DT, Berkowitz AE (1993) Spin canting, surface magnetization, and finite-size effects in γ-Fe2O3 particles. Phys Rev B 47:7885. doi:10.1103/PhysRevB.47.7885 CrossRefADSGoogle Scholar
  14. Pelecky DLL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783. doi:10.1021/cm960077f CrossRefGoogle Scholar
  15. Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395. doi:10.1021/ja0027766 CrossRefGoogle Scholar
  16. Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353. doi:10.1021/ja0173167 PubMedCrossRefGoogle Scholar
  17. Tihay F, Roger AC, Kiennemann A, Lakamp S, pourroy G (2000) Fe–Co based metal/spinel to produce light olefins from syngas. Catal Today 58:263–269CrossRefGoogle Scholar
  18. Tihay F, Roger AC, Pourroy G, Kiennemann A (2002) Role of the alloy and spinel in the catalytic behaviour of Fe–Co/cobalt magnetite composites under CO and CO2 hydrogenation. Energy Fuels 16:1271–1276. doi:10.1021/ef020059m CrossRefGoogle Scholar
  19. Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11:1942–1947. doi:10.1021/cm990187x CrossRefGoogle Scholar
  20. Voit W, Kim DK, Zapka W, Muhammed M, Rao KV (2001) Magnetic behaviour of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater Res Soc 676:781–786Google Scholar
  21. Zhao L, Zhang H, Xin Y, Sun S, Yu S (2007) Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties. Chem Mater 20:198–204. doi:10.1021/cm702352y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations