Skip to main content
Log in

Morphology and magnetic properties of Fe x Co1−x /Co y Fe3−y O4 nanocomposites prepared by surfactants-assisted-hydrothermal process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recently, we have demonstrated the successful synthesis of Fe x Co1−x /Co y Fe3−y O4 nanocomposites with various alkaline solutions by using surfactants-assisted-hydrothermal (SAH) process. In this article, the synthesis of Fe x Co1−x /CoyFe3−y O4 nanocomposites with their sizes varying between 20 nm and 2 μm was reported. X-ray powder diffraction (XRD) analyses showed that the surfactants, pH, precipitator, and temperature of the system play important roles in the nucleation and growth processes. The magnetic properties tested by vibrating sample magnetometer (VSM) at room temperature exhibit ferromagnetic behavior of the nanocomposites. These Fe x Co1−x /Co y Fe3−y O4 nanocomposites may have a potential application as magnetic carriers for drug targeting because of their excellent soft-magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berkowitz AE, Shuele WJ, Flanders PJ (1968) Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J Appl Phys 39:1261–1263

    Article  ADS  CAS  Google Scholar 

  • Caillof T, Pourroy G, Stuerga D (2004) Microwave hydrothermal flash synthesis of nanocomposites Fe–Co cobalt alloy/cobalt ferrite. J Solid State Chem 177:3843–3848. doi:10.1016/j.jssc.2004.06.009

    Article  ADS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxide: structure, properties, reactions, occurrence and uses. VCH, Weinheim

    Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, London, UK

    Google Scholar 

  • Estournes C, Cornu N, Guille JL (1994) Reduction of copper in soda-lime silicate glass by hydrogen. J Non-Cryst Solids 170:287–294. doi:10.1016/0022-3093(94)90058-2

    Article  ADS  CAS  Google Scholar 

  • Fröba M, Köhn R, Bouffaud G, Richard O, Van Tendeloo G (1999) Fe2O3 nanoparticles within mesoporous MCM-48 silica. In situ formation and characterization. Chem Mater 11:2858–2865

    Article  Google Scholar 

  • Hunter RJ (1987) Foundations of colloid science, vol 1. Oxford University Press, Oxford, p 420

    Google Scholar 

  • Läkamp S, Pourroy G (1996) Influence of Co/Fe ratio on the synthesis of cobalt containing metal–spinel composites by using iron disproportionation. J Solid State Chem 123:109–114

    Article  Google Scholar 

  • Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128:968–975. doi:10.1021/ja056609n

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Quintela MA, Rivas J (1993) Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles. J Colloid Interface Sci 158:446–451. doi:10.1006/jcis.1993.1277

    Article  CAS  Google Scholar 

  • Martinez B, Obradors X, Balcells L, Rouanet A, Monty C (1998) Low temperature surface spin–glass transition in γ-Fe2O3 nanoparticles. Phys Rev Lett 80:181–184. doi:10.1103/PhysRevLett.80.181

    Article  ADS  CAS  Google Scholar 

  • Osso D, Tillement O, Le Caer G, Mocellin AJ (1998) Alumina-alloy nanocomposite powders by mechanosynthesis. Mater Sci 33:3109–3119. doi:10.1023/A:1004343806144

    Article  ADS  CAS  Google Scholar 

  • Parker FT, Foster MW, Margulies DT, Berkowitz AE (1993) Spin canting, surface magnetization, and finite-size effects in γ-Fe2O3 particles. Phys Rev B 47:7885. doi:10.1103/PhysRevB.47.7885

    Article  ADS  CAS  Google Scholar 

  • Pelecky DLL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783. doi:10.1021/cm960077f

    Article  Google Scholar 

  • Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395. doi:10.1021/ja0027766

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353. doi:10.1021/ja0173167

    Article  PubMed  CAS  Google Scholar 

  • Tihay F, Roger AC, Kiennemann A, Lakamp S, pourroy G (2000) Fe–Co based metal/spinel to produce light olefins from syngas. Catal Today 58:263–269

    Article  CAS  Google Scholar 

  • Tihay F, Roger AC, Pourroy G, Kiennemann A (2002) Role of the alloy and spinel in the catalytic behaviour of Fe–Co/cobalt magnetite composites under CO and CO2 hydrogenation. Energy Fuels 16:1271–1276. doi:10.1021/ef020059m

    Article  CAS  Google Scholar 

  • Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11:1942–1947. doi:10.1021/cm990187x

    Article  CAS  Google Scholar 

  • Voit W, Kim DK, Zapka W, Muhammed M, Rao KV (2001) Magnetic behaviour of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater Res Soc 676:781–786

    Google Scholar 

  • Zhao L, Zhang H, Xin Y, Sun S, Yu S (2007) Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties. Chem Mater 20:198–204. doi:10.1021/cm702352y

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Yang, H. Morphology and magnetic properties of Fe x Co1−x /Co y Fe3−y O4 nanocomposites prepared by surfactants-assisted-hydrothermal process. J Nanopart Res 11, 1043–1051 (2009). https://doi.org/10.1007/s11051-008-9495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9495-8

Keywords

Navigation