Surface-functionalization of spherical silver nanoparticles with macrocyclic polyammonium cations and their potential for sensing phosphates

Research Paper

Abstract

The synthesis of aqueous dispersion of spherical, underivatized silver nanoparticles (Ag-NPs) stabilized by macrocyclic polyammonium chlorides (MCPAC), [28]ane-(NH2+)6O2·6Cl (28-MCPAC) and [32]ane-(NH2+)8·8Cl (32-MCPAC), which are evidently anion receptors, is reported. As-synthesized Ag-NPs are characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The 28/32-MCPAC-stabilized Ag-NPs show the surface plasmon band around 400 nm. The TEM-images show that the particles are spherical and well-dispersed. By tuning the 28/32-MCPAC:Ag-OAc (silver acetate) ratio, nanoparticles with different core diameters ranging from 13 to 8 nm for 28-MCPAC and from 10 to 6 nm for 32-MCPAC can be obtained. The advantage of using MCPAC as stabilizers is that they make the particles functionalized for sensing anions. Thus, the potential of the as-synthesized Ag-NPs for sensing phosphates: H2PO4 (monobasic phosphate, MBP), HPO42− (dibasic phosphate, DBP) and PO43− (tribasic phosphate, TBP) is investigated spectroscopically. Interaction of phosphate ions with macrocyclic polyammonium cations makes the Ag-NPs bare, leading agglomeration. The phosphate-assisted agglomeration of 32-MCPAC-Ag-NPs follow the order TBP > DBP ≫ MBP.

Keywords

Silver nanoparticles Functionalization Macrocyclic polyammonium chlorides Water Dispersion Phosphates Colloids 

Supplementary material

11051_2008_9493_MOESM1_ESM.pdf (56 kb)
MOESM1 [Supporting material includes the photographs of 32-MCPAC-Ag-NPs in the presence of phosphate ions over time.] (PDF 55 kb)] (PDF 55 kb)

References

  1. Bazzicalupi C, Bencini A, Bianchi A, Cecchi M, Escuder B, Fusi V et al (1999) Thermodynamics of phosphates and pyrophosphates anions binding by polyammonium receptors. J Am Chem Soc 121(29):6807–6815. doi:10.1021/ja983947y CrossRefGoogle Scholar
  2. Beer PD, Gale PA (2001) Anion recognition and sensing: a state of the art and future perspectives. Angew Chem Int Ed 40:486–516. doi:10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-PCrossRefGoogle Scholar
  3. Bianchi A, Bowman-James K, Garcia-España E (1997) Supramolecular chemistry. Wiley-VCH, New YorkGoogle Scholar
  4. Braun E, Erichen Y, Siven U, Yoseph GB (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778. doi:10.1038/35826 PubMedCrossRefADSGoogle Scholar
  5. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802. doi:10.1039/c39940000801
  6. Chen S, Kimura K (1999) Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 15(4):1075–1082. doi:10.1021/la9812828 CrossRefGoogle Scholar
  7. Chen W, Dong S, Wang E (2003) Synthesis and self-assembly of cetyltrimethyl-ammonium bromide-capped gold nanoparticles. Langmuir 19(22):9434–9439. doi:10.1021/la034818k CrossRefGoogle Scholar
  8. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH et al (2005) Interaction of silver nanoparticles with HIV-I. J Nanobiotechnol 3(6):1–10. doi:10.1186/1477-3155-3-6 Google Scholar
  9. Fink J, Kiely CJ, Bethell D, Schiffrin DJ (1998) Self-organization of nanosized gold particles. Chem Mater 10(3):922–926. doi:10.1021/cm970702w CrossRefGoogle Scholar
  10. Fitzmaurice D, Rao SN, Preece JA, Stoddart JF, Wenger S, Zaccheroni N (1999) Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. Angew Chem Int Ed Engl 38(8):1147–1150. doi:10.1002/(SICI)1521-3773(19990419)38:8<1147::AID-ANIE1147>3.0.CO;2-ACrossRefGoogle Scholar
  11. Garcia-España E, Diaz P, Llinares JM, Bianchi A (2006) Anion coordination chemistry in aqueous solution of polyammonium receptors. Coord Chem Rev 250:2952–2986. doi:10.1016/j.ccr.2006.05.018 CrossRefGoogle Scholar
  12. Hailstone RK (1995) Computer simulation studies of silver cluster formation on AgBr microcrystals. J Phys Chem 99(13):4414–4428. doi:10.1021/j100013a009 CrossRefGoogle Scholar
  13. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103(44):9533–9539. doi:10.1021/jp9925334 CrossRefGoogle Scholar
  14. Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19(11):4831–4835. doi:10.1021/la020710d CrossRefGoogle Scholar
  15. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. doi:10.1002/bit.20368 PubMedCrossRefGoogle Scholar
  16. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744. doi:10.1021/jp0209289 CrossRefGoogle Scholar
  17. Kang SY, Kim K (1998) Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14(1):226–230. doi:10.1021/la970696i CrossRefGoogle Scholar
  18. Kelly KL, Coronado E, Zhao LI, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. doi:10.1021/jp026731y CrossRefGoogle Scholar
  19. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025 CrossRefGoogle Scholar
  20. Li X, Jhang J, Xu W, Jia H, Wang X, Yang B et al (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19(10):4285–4290. doi:10.1021/la0341815 CrossRefGoogle Scholar
  21. Lin SY, Liu SW, Lin CM, Chen CH (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74(2):330–335. doi:10.1021/ac0156316 PubMedCrossRefMathSciNetGoogle Scholar
  22. Lin SY, Chen CH, Lin MC, Hsu HF (2005) A cooperative effect of biofunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal Chem 77(15):4821–4828. doi:10.1021/ac050443r PubMedCrossRefGoogle Scholar
  23. Liu CY, Chen WH (1998) Electrophoretic separation of inorganic anions with an anion complex one-modified capillary column. J Chromatogr A 815:251–263. doi:10.1016/S0021-9673(98)00481-6 CrossRefGoogle Scholar
  24. Liu J, Alvarez J, Kaifer AE (2000) Metal nanoparticles with a knack for molecular recognition. Adv Mater 12(18):1381–1383 and references cited therein. doi:10.1002/1521-4095(200009)12:18<1381::AID-ADMA1381>3.0.CO;2-U Google Scholar
  25. Liu C, Yang X, Yuana H, Zhou Z, Xiao D (2007a) Preparation of silver nanoparticles and its application to the determination of ct-DNA. Sensors 7:708–718CrossRefGoogle Scholar
  26. Liu CY, Chen TH, Misra TK (2007b) A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates. J Chromatogr A 1154:407–415. doi:10.1016/j.chroma.2007.03.083 PubMedCrossRefGoogle Scholar
  27. Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9. doi:10.1021/nl048965u PubMedCrossRefADSGoogle Scholar
  28. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13(19):1501–1505. doi:10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-ZCrossRefGoogle Scholar
  29. Mayer ABR, Mark JE (2002) Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles. Polymer (Guildf) 41(4):1627–1631. doi:10.1016/S0032-3861(99)00368-7 CrossRefGoogle Scholar
  30. Misra TK, Liu CY (2008) Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucleotides. J Colloid Interface Sci (in press). doi:10.1016/j/jcis.2008.06.056
  31. Misra TK, Chen TS, Wong KT, Liu CY (2005) A convenient modified short route for the preparation of [32]ane-N8 hydrochloride. J Chin Chem Soc 52(4):793–797Google Scholar
  32. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059 CrossRefADSGoogle Scholar
  33. Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID et al (2001) Submicrometer metallic barcodes. Science 294:137–141. doi:10.1126/science.294.5540.137 PubMedCrossRefADSGoogle Scholar
  34. Pal A, Pal T (1999) Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis. J Raman Spectrosc 30(3):199–204. doi:10.1002/(SICI)1097-4555(199903)30:3<199::AID-JRS359>3.0.CO;2-BCrossRefADSGoogle Scholar
  35. Pasquato L, Pengo P, Scrimin P (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14:3481–3487. doi:10.1039/b410476e CrossRefGoogle Scholar
  36. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97(49):12974–12983. doi:10.1021/j100151a054 CrossRefGoogle Scholar
  37. Ryan D, Rao SN, Rensmo H, Fitzmaurice D, Preece JA, Wenger S et al (2000) Heterosupramolecular chemistry: recognition initiated and inhibited silver nanocrystal aggregation by pseudorotaxane assembly. J Am Chem Soc 122(26):6252–6257. doi:10.1021/ja0002621 CrossRefGoogle Scholar
  38. Saenger W (1998) Principles of nucleic acid structure. Springer, New YorkGoogle Scholar
  39. Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997) Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. J Phys Chem B 101(48):9876–9880. doi:10.1021/jp971544z CrossRefGoogle Scholar
  40. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001. doi:10.1073/pnas.97.3.996 PubMedCrossRefADSGoogle Scholar
  41. Shiraishi Y, Toshima N (1999) Colloidal silver catalysts for oxidation of ethylene. J Mol Catal Chem 141:187–192. doi:10.1016/S1381-1169(98)00262-3 CrossRefGoogle Scholar
  42. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182. doi:10.1016/j.jcis.2004.02.012 PubMedCrossRefGoogle Scholar
  43. Thomson NR (1973) Comprehensive inorganic chemistry. Pergamon Press, New YorkGoogle Scholar
  44. Turkevich J, Garton G, Stevenson PC (1954) The color of colloidal gold. J Colloid Sci 9:26–35. doi:10.1016/0095-8522(54)90070-7 CrossRefGoogle Scholar
  45. Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by interphase reduction. Colloids Surf A Physicochem Eng Asp 152(3):375–379. doi:10.1016/S0927-7757(98)00861-9 CrossRefGoogle Scholar
  46. Xu J, Han X, Liu H, Hu Y (2006) Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf A Physicochem Eng Asp 273:179–183. doi:10.1016/j.colsurfa.2005.08.019 CrossRefGoogle Scholar
  47. Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2004) Oligonucleotide-displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates. Anal Biochem 330(1):81–86. doi:10.1016/j.ab.2004.04.001 PubMedCrossRefGoogle Scholar
  48. Zheng J, Stevenson MS, Hikida RS, Van Patten PG (2002) Influence of pH on dendrimer-protected nanoparticles. J Phys Chem B 106(6):1252–1255. doi:10.1021/jp013108p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations