Skip to main content
Log in

Electrochemical activity of rock-salt-structured LiFeO2/Li4/3Ti2/3O2 nanocomposites in lithium cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

α-LiFeO2 prepared as nanoparticles exhibits substantially increased electrochemical activity in lithium cells. Thus, in the first half-cycle, the nanoferrite provides a capacity close to 70 mAh g−1 (i.e. approximately 0.25 mol lithium ions is deinserted from the lithium ferrite network), which is several times higher than the values for other ferrites. Even higher capacities have been observed for solid solutions of α-LiFeO2 and rock-salt lithium titanate. In this work, we prepared nanocomposites with improved electroactivity in the first half-cycle. Also, we compared their electrochemical properties with those of nanosized lithium ferrite and lithium titanate. Based on them, explanation for their disparate behaviour involving a protective role of the titanate coating from unwanted reactions with the electrolyte is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bäuerle JE (1969) Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30:2657–2670

    Article  Google Scholar 

  • Caballero A, Cruz-Yusta M, Morales J, Santos-Peña J, Rodríguez-Castellón E (2006) A new and fast synthesis of nanosized LiFePO4 electrode materials. Eur J Inorg Chem 9:1758–1764

    Article  Google Scholar 

  • Fauteux D (1985) Formation of a passivating film at the lithium-PEO-LiCF3SO3 interface. Solid State Ion 17:133–138

    Article  CAS  Google Scholar 

  • Franger S, Le Cras F, Bourbon C, Rouault H (2002) LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochem Solid-State Lett 5:A231–A233

    Article  CAS  Google Scholar 

  • Franger S, Le Cras F, Bourbon C, Rouault H (2003a) Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Source 119–121:252–257

    Article  Google Scholar 

  • Franger S, Bach S, Farcy J, Pereira-Ramos JP, Baffier N (2003b) An electrochemical impedance spectroscopy study of new lithiated manganese oxides for 3V application in rechargeable Li-batteries. Electrochim Acta 48:891–900

    Article  CAS  Google Scholar 

  • Franger S, Bourbon C, LeCras F (2004) Optimized lithium iron phosphate for high-rate electrochemical applications. J Electrochem Soc 151:A1024–A1027

    Article  CAS  Google Scholar 

  • Garnier S, Bohnke C, Bohnke O, Fourquet JL (1996) Electrochemical intercalation of lithium into the ramsdellite-type structure of Li2Ti3O7. Solid State Ion 83:323–332

    Article  CAS  Google Scholar 

  • Ho C, Raistrick ID, Huggins RA (1980) Application of a-c techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–349

    Article  CAS  Google Scholar 

  • Huang SY, Kavan L, Exnar I, Grätzel M (1995) Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J Electrochem Soc 142:L142–L144

    Article  CAS  Google Scholar 

  • Kanno R, Shirane T, Inaba Y, Kawamoto Y (1997) Synthesis and electrochemical properties of lithium iron oxides with layer-related structures. J Power Source 68:145–152

    Article  CAS  Google Scholar 

  • Lee YS, Yoon CS, Sun YK, Kobayakawa K, Sato Y (2002) Synthesis of nano-crystalline LiFeO2 material with advanced battery performance. Electrochem Commun 4:727–731

    Article  CAS  Google Scholar 

  • Lee YS, Sato S, Tabuchi M, Yoon CS, Sun YK, Kobayakawa K, Sato Y (2003a) Structural change and capacity loss mechanism in orthorhombic Li/LiFeO2 system during cycling. Electrochem Commun 5:549–554

    Article  CAS  Google Scholar 

  • Lee YS, Sato S, Sun YK, Kobayakawa K, Sato Y (2003b) A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling. J Power Source 119–121:285–289

    Google Scholar 

  • Masquelier C, Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) New cathode materials for rechargeable lithium batteries: the 3-D framework structures Li3Fe2(XO4)3(X=P, As). J Solid State Chem 135:228–234. doi:10.1006/jssc.1997.7629

    Article  CAS  Google Scholar 

  • Matsumura T, Kanno R, Inaba Y, Kawamoto Y, Takano M (2002) Synthesis, structure and electrochemical properties of a new cathode material, LiFeO2, with a tunnel structure. J Electrochem Soc 149:A1509–A1513

    Article  CAS  Google Scholar 

  • Morales J, Santos-Peña J (2007) Highly electroactive nanosized α-LiFeO2. Electrochem Commun 9:2116–2120

    Article  CAS  Google Scholar 

  • Morales J, Santos-Peña J, Rodríguez-Castellón E, Franger S (2007) Antagonistic effects of copper on the electrochemical performance of LiFePO4. Electrochim Acta 53:920–926

    Article  CAS  Google Scholar 

  • Morales J, Santos-Peña J, Trócoli R, Franger S (2008) Insights on the electrochemical activity of nanosized α-LiFeO2. Electrochim Acta 53:6366–6371. doi:10.1016/j.electacta.2008.04.057

    Article  CAS  Google Scholar 

  • Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ion 92:1–10. doi:10.1016/S0167-2738(96)00472-9

    Article  CAS  Google Scholar 

  • Obrovac MN, Mao O, Dahn JR (1998) Structure and electrochemistry of LiMO2 (M=Ti,Mn,Fe,Co,Ni) prepared by mechanochemical synthesis. Solid State Ion 112:9–19

    Article  CAS  Google Scholar 

  • Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  • Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  • Sakurai Y, Arai H, Okada S, Yamaki J (1997) Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodes. J Power Source 68:711–715

    Article  CAS  Google Scholar 

  • Sakurai Y, Arai H, Yamaki J (1998) Preparation of electrochemically active α-LiFeO2 at low temperature. Solid State Ion 113–115:29–34

    Article  Google Scholar 

  • Sequeira CAC, Hooper A (1983) The study of lithium electrode reversibility against (PEO)xLiF3CSO3 polymeric electrolytes. Solid State Ion 9–10:1131–1138

    Article  Google Scholar 

  • Shigemura H, Tabuchi M, Sakaebe H, Kobayashi H, Kageyama H (2003) Lithium extraction and insertion behavior of nanocrystalline Li2TiO3-LiFeO2 solid solution with cubic rock salt structure. J Electrochem Soc 150:A638–A644

    Article  CAS  Google Scholar 

  • Tabuchi M, Nakashima A, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Tatsumi K, Kageyama H, Nakamura T, Kanno R (2003) Fine Li(4−x)/3Ti(2−2x)/3FexO2 (0.18 ≤ x ≤ 0.67) powder with cubic rock-salt structure as a positive electrode material for rechargeable lithium batteries. J Mater Chem 13:1747–1757

    Article  CAS  Google Scholar 

  • Thomas MGSR, Bruce PG, Goodenough JB (1985) AC impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2. J Electrochem Soc 132:1521–1528

    Article  CAS  Google Scholar 

  • Wang X, Gao L, Zhou F, Zhang Z, Ji M, Tang C, Shen T, Zheng H (2004) Large-scale synthesis of α-LiFeO2 nanorods by low-temperature molten salt synthesis (MSS) method. J Cryst Growth 265:220–223

    Article  CAS  Google Scholar 

  • West AR (1999) Basic solid state chemistry, 2nd edn. Wiley, NY, pp 324–332

    Google Scholar 

  • Zhang DR, Liu HL, Jin RH, Zhang NZ, Liu YX, Kang YS (2007) Synthesis and characterisation of nanocrystalline LiTiO2 using a one-step hydrothermal method. J Ind Eng Chem 13:92–96

    Google Scholar 

Download references

Acknowledgements

This work was supported by CICyT (MAT2005-03069), Junta de Andalucía (Group FQM 175) and the José Castillejo Program (MEC, Spain). JSP is also grateful to Junta de Andalucía (Spain) for inclusion in its Researcher Return Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Santos-Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, J., Santos-Peña, J., Trócoli, R. et al. Electrochemical activity of rock-salt-structured LiFeO2/Li4/3Ti2/3O2 nanocomposites in lithium cells. J Nanopart Res 10 (Suppl 1), 217–226 (2008). https://doi.org/10.1007/s11051-008-9490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9490-0

Keywords

Navigation