Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 841–859 | Cite as

Ab initio study of [001] GaN nanowires

Research Paper

Abstract

We present the results of a study of structural, electronic, and optical properties of the unpassivated and H-passivated GaN nanowires having diameters in the range of 3.29 to 18.33 Å grown along [001] direction by employing the first-principles pseudopotential method within density functional theory in the local density approximation. Two types of nanowires having hexagonal and triangular cross-sections have been investigated. The binding energy increases with the diameter of the nanowire because of a decrease in the relative number of the unsaturated surface bonds. The binding energies of the triangular cross-sectional nanowires are somewhat smaller than those of the hexagonal cross-sectional nanowires in accordance with the Wulff’s rule except the smallest diameter triangular cross-sectional nanowire, where the binding energy is comparable with the corresponding hexagonal cross-sectional nanowires. The band gap varies rapidly with the diameter of the nanowire in the case of the smaller diameter nanowires, and quite slowly for the larger diameter nanowires. After atomic relaxation, appreciable distortion occurs in the nanowires, where the chains of Ga- and N-atoms are curved in different directions. These distortions are reduced with the diameters of the nanowires. The optical absorption in the GaN nanowires is quite strong in the ultra-violet region but an appreciable absorption is also present in the visible region for the larger diameter nanowires. The present results indicate the possibility of engineering the properties of nanowires by manipulating their diameter and surface structure. The presently predicted smaller diameter GaN nanowire possessing the triangular cross-section should be observable in the experiments.

Keywords

Semiconducting nanowires LEDs Optical absorptions Electronic structures Structural stability Theory Modeling and simulation 

References

  1. Agrawal BK, Agrawal S, Srivastava R, Singh S (2004) Ab initio study of 4 Å armchair carbon nanoropes: orientation-dependent properties. Phys Rev B 70:075403. doi:10.1103/PhysRevB.70.075403 CrossRefADSGoogle Scholar
  2. Agrawal BK, Agrawal S, Singh S (2005) Ab initio study of curvature effects on the physical properties of the Xe-doped nanotubes and nanoropes. J Phys Condens Matter 17:2085–2110. doi:10.1088/0953-8984/17/13/008 CrossRefADSGoogle Scholar
  3. Agrawal BK, Agrawal S, Singh S, Srivastava R (2006a) Ab initio study of curvature effects on the physical properties of CH4-doped nanotubes and nanoropes. J Phys Condens Matter 18:4649–4675. doi:10.1088/0953-8984/18/19/018 CrossRefADSGoogle Scholar
  4. Agrawal BK, Singh V, Srivastava R, Agrawal S (2006b) Ab initio study of the structural, electronic, and optical properties of ultrathin lead nanowires. Phys Rev B 74:245405. doi:10.1103/PhysRevB.74.245405 CrossRefADSGoogle Scholar
  5. Agrawal BK, Singh V, Srivastava R, Agrawal S (2006c) Ab initio study of the structural, electronic and optical properties of ultrathin bismuth nanowires. Nanotechnology 17:2340–2349CrossRefADSGoogle Scholar
  6. Agrawal BK, Singh V, Pathak A, Srivastava R (2007a) Ab initio study of ice nanotubes in isolation or inside single-walled carbon nanotubes. Phys Rev B 75(195420):195421. doi:10.1103/PhysRevB.75.195421 ADSGoogle Scholar
  7. Agrawal BK, Singh V, Srivastava R, Agrawal S (2007b) Structural, electronic and optical properties of ultrathin thallium nanowires—an ab initio study. Philos Mag 87:2335–2353. doi:10.1080/14786430601176415 CrossRefADSGoogle Scholar
  8. Agrawal BK, Singh V, Srivastava R, Agrawal S (2007c) Effect of spin–orbit interaction on the electronic and optical properties of ultrathin bismuth nanowires—a density functional approach. Nanotechnology 18:415705CrossRefGoogle Scholar
  9. Akabori M, Tanaka J, Motohisa J, Fukui T (2003) InGaAs nano-pillar array formation on partially masked InP(111) B by selective area—organic vapour phase epitaxial growth for two-dimensional photonic crystal application. Nanotechnology 14:1071–1074. doi:10.1088/0957-4484/14/10/303 CrossRefADSGoogle Scholar
  10. Akiyama T, Nakamura K, Ito T (2006) Structural stability and electronic structures of InP nanowires: role of surface dangling bonds on nanowire facets. Phys Rev B 73:235308. doi:10.1103/PhysRevB.73.235308 CrossRefADSGoogle Scholar
  11. Bhunia S, Kawamura T, Watanabe Y, Fujikawa S, Tokushima K (2003) Metalorganic vapor-phase epitaxial growth and characterization of vertical InP nanowires. Appl Phys Lett 83:3371. doi:10.1063/1.1619224 CrossRefADSGoogle Scholar
  12. Bruno M, Palummo M, Marini A, Sole RD, Olevano V, Kholod AN et al (2005) Excitons in germanium nanowires: quantum confinement, orientation, and anisotropy effects within a first-principles approach. Phys Rev B 72:153310. doi:10.1103/PhysRevB.72.153310 CrossRefADSGoogle Scholar
  13. Chan YF, Duan XF, Chan SK, Sou IK, Zhang X, Wang N (2003) ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy. Appl Phys Lett 83:2665. doi:10.1063/1.1615293 CrossRefADSGoogle Scholar
  14. Chan TL, Ciobanu CV, Chuang FC, Lu N, Wang CZ, Ho KM (2006) Magic structures of H-passivated <110> silicon nanowires. Nano Lett 6:277–281. doi:10.1021/nl0522633 PubMedCrossRefGoogle Scholar
  15. Duan X, Lieber CM (2000) General synthesis of compound semiconductor nanowires. Adv Mater (Weinheim, Germany) 12:298–302CrossRefGoogle Scholar
  16. Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69. doi:10.1038/35051047 PubMedCrossRefADSGoogle Scholar
  17. Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S et al (2003a) High performance thin film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278. doi:10.1038/nature01996 PubMedCrossRefADSGoogle Scholar
  18. Duan X, Huang Y, Agarwal R, Lieber CM (2003b) Single nanowire electrically driven laser. Nature 421:241–245. doi:10.1038/nature01353 PubMedCrossRefADSGoogle Scholar
  19. Edgar JH (ed) (1994) Properties of group-III nitrides, EMIS data reviews series. IEE, LondonGoogle Scholar
  20. Goedecker S (1997) Fast radix 2, 3, 4 and 5 kernels for fast fourier transformations on computers with overlapping multiply-add instructions. SIAM J Sci Comput 18:1605. doi:10.1137/S1064827595281940 MATHCrossRefMathSciNetGoogle Scholar
  21. Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ et al (2003) Single-crystal gallium nitride nanotubes. Nature 422:599–602. doi:10.1038/nature01551 PubMedCrossRefADSGoogle Scholar
  22. Gonze X (1996) Towards a potential-based conjugate gradient algorithm for order-N self-consistent total energy calculations. Phys Rev B 54:4383. doi:10.1103/PhysRevB.54.4383 CrossRefADSGoogle Scholar
  23. Gudiksen MS, Wang J, Lieber CM (2001) Synthetic control of the diameter and length of single crystal semiconductor nanowires. J Phys Chem B 105:4062–4064. doi:10.1021/jp010540y CrossRefGoogle Scholar
  24. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620. doi:10.1038/415617a PubMedCrossRefADSGoogle Scholar
  25. Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641. doi:10.1103/PhysRevB.58.3641 CrossRefGoogle Scholar
  26. Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M et al (1995) Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J Appl Phys 77:447. doi:10.1063/1.359026 CrossRefADSGoogle Scholar
  27. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473. doi:10.1126/science.287.5457.1471 PubMedCrossRefADSGoogle Scholar
  28. Huang Y, Duan X, Cui Y, Lieber CM (2002) Gallium nitride nanowire nanodevices. Nano Lett 2:101–104. doi:10.1021/nl015667d CrossRefGoogle Scholar
  29. Hybertsen MS, Needles M (1993) First-principles analysis of electronic states in silicon nanoscale quantum wires. Phys Rev B 48:4608. doi:10.1103/PhysRevB.48.4608 CrossRefADSGoogle Scholar
  30. Kikkawa J, Ohno Y, Takeda S (2005) Growth rate of silicon nanowires. Appl Phys Lett 86:123109. doi:10.1063/1.1888034 CrossRefADSGoogle Scholar
  31. Kim K, Lambrecht WR, Segall B (1996) Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys Rev B 53:16310. doi:10.1103/PhysRevB.53.16310 CrossRefADSGoogle Scholar
  32. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425. doi:10.1103/PhysRevLett.48.1425 CrossRefADSGoogle Scholar
  33. Koguchi M, Kakibayashi H, Yazawa M, Hiruma K, Katsuyama T (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J Appl Phys 31(Part 1):2061–2065. doi:10.1143/JJAP.31.2061 CrossRefADSGoogle Scholar
  34. Kuykendall T, Pauzauskie PJ, Zhang Y, Goldberger J, Sirbuly D, Denlinger J et al (2004) Crystallographic alignment of high density gallium nitride nanowire arrays. Nat Mater 3:524–528. doi:10.1038/nmat1177 PubMedCrossRefADSGoogle Scholar
  35. Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61. doi:10.1038/nature01141 PubMedCrossRefADSGoogle Scholar
  36. Li J, Wang LW (2005) Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys Rev B 72:125325. doi:10.1103/PhysRevB.72.125325 CrossRefADSGoogle Scholar
  37. Liu J, Meng XM, Jiang Y, Lee CS, Bello I, Lee ST (2003) Gallium nitride nanowires doped with silicon. Appl Phys Lett 83:4241. doi:10.1063/1.1628820 CrossRefADSGoogle Scholar
  38. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Small-diameter silicon nanowire surfaces. Science 299:1874–1877. doi:10.1126/science.1080313 PubMedCrossRefADSGoogle Scholar
  39. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211. doi:10.1126/science.279.5348.208 PubMedCrossRefGoogle Scholar
  40. Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) A review of large bandgap SiC, III–V nitrides, and ZnSe based II–VI semiconductor structures and devices. J Appl Phys 76:1363. doi:10.1063/1.358463 CrossRefGoogle Scholar
  41. Nakamura S, Mukai T, Senoh M (1994) Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett 64:1687. doi:10.1063/1.111832 CrossRefADSGoogle Scholar
  42. Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T, Makai T (1995) Superbright green InGaN SQW structure LEDs. Jpn J Appl Phys 34:L1332–L1335. doi:10.1143/JJAP.34.L1332 CrossRefADSGoogle Scholar
  43. Ohno T, Shiraishi K, Ogawa T (1992) Intrinsic origin of visible light emission from silicon quantum wires: electronic structure and geometrically restricted exciton. Phys Rev Lett 69:2400. doi:10.1103/PhysRevLett.69.2400 PubMedCrossRefADSGoogle Scholar
  44. Ozaki N, Ohno Y, Takeda S (1998) Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface. Appl Phys Lett 73:3700. doi:10.1063/1.122868 CrossRefADSGoogle Scholar
  45. Paulus B, Shi FH, Stoll H (1997) A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III–V nitrides. J Phys Condens Matter 9:2745–2758. doi:10.1088/0953-8984/9/13/012 CrossRefADSGoogle Scholar
  46. Payne MC (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045. doi:10.1103/RevModPhys.64.1045 CrossRefADSGoogle Scholar
  47. Powell RC, Tomasch GA, Kim YW, Thornton JA, Greene JE (1990) Diamond, silicon carbide and related wide band gap semiconductors. In: Glass JT, Messier R, Fujimori N (eds) MRS symposia proceedings no. 162. Materials Research Society, Pittsburgh, p 525Google Scholar
  48. Powell RC, Lee NE, Kim YW, Greene JE (1993) Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ion molecular-beam epitaxy: growth kinetics, microstructure, and properties. J Appl Phys 73:189. doi:10.1063/1.353882 CrossRefGoogle Scholar
  49. Rurali R, Lorente N (2005) Lorente metallic and semimetallic silicon <100> nanowires. Phys Rev Lett 94:026805. doi:10.1103/PhysRevLett.94.026805 PubMedCrossRefADSGoogle Scholar
  50. Sanders GD, Chang YC (1992) Theory of optical properties of quantum wires in porous silicon. Phys Rev B 45:9202. doi:10.1103/PhysRevB.45.9202 CrossRefADSGoogle Scholar
  51. Seervice RF (2001) Molecules get wired. Science 294:2442. doi:10.1126/science.294.5551.2442 CrossRefGoogle Scholar
  52. Singh AK, Kumar V, Briere TM, Kawazoe Y (2002) Cluster assembled metal encapsulated thin nanotubes of silicon. Nano Lett 2:1243–1248. doi:10.1021/nl025789l CrossRefGoogle Scholar
  53. Spataru CD, Beigi SI, Benedict LX, Louie SG (2004) Condensed matter: electronic properties, etc.—excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:77402. doi:10.1103/PhysRevLett.92.077402 CrossRefADSGoogle Scholar
  54. Tan TY, Li N, Gosele U (2003) Is there a thermodynamic size limit of nanowires grown by the vapor–liquid–solid process? Appl Phys Lett 83:1199. doi:10.1063/1.1599984 CrossRefADSGoogle Scholar
  55. Wagner RS, Elis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89. doi:10.1063/1.1753975 CrossRefADSGoogle Scholar
  56. Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM (2001) Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293:1455–1457. doi:10.1126/science.1062340 PubMedCrossRefADSGoogle Scholar
  57. Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett 4:433–436. doi:10.1021/nl035162i CrossRefGoogle Scholar
  58. Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087 CrossRefGoogle Scholar
  59. Yazawa M, Koguchi M, Hiruma K (1991) Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates. Appl Phys Lett 58:1080. doi:10.1063/1.104377 CrossRefADSGoogle Scholar
  60. Yeh CY, Zhang SB, Zunger A (1994) Confinement, surface and chemisorption effects on the optical properties of Si quantum wires. Phys Rev B 50:14405. doi:10.1103/PhysRevB.50.14405 CrossRefADSGoogle Scholar
  61. Zhao X, Wei CM, Yang L, Chou MY (2004) Quantum confinement and electronic properties of silicon nanowires. Phys Rev Lett 92:236805. doi:10.1103/PhysRevLett.92.236805 PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Physics DepartmentAllahabad UniversityAllahabadIndia

Personalised recommendations