Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 917–921 | Cite as

Effects of In and Mg doping on properties of ZnO nanoparticles by flame spray synthesis

  • Hui Li
  • Yongzhe Zhang
  • Xiaojun Pan
  • Hongliang Zhang
  • Tao Wang
  • Erqing Xie
Research Paper

Abstract

The Mg- and In-doped zinc oxide (MgxZn1−xO, InyZn1−yO) nanoparticles were successfully prepared by flame spray synthesis method. According to the results obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis absorption spectra, it was concluded that the Mg or In doping induced the lattice constants to change to some extent; the band gap of MgxZn1−xO also increased with respect to the decreasing band gap of InyZn1−yO. Moreover, the strong UV emission and weak visible emission were investigated by photoluminescence spectra, while the mechanisms of Mg or In doping on PL spectra have been discussed in detail.

Keywords

ZnO Doping Nanoparticles Optical properties Aerosols Combustion 

References

  1. Assuncao V, Fortunato E, Marques A, Águas H, Ferreira I, Costa MEV, Martins R (2003) Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films 427:401–405CrossRefADSGoogle Scholar
  2. Bai SN, Tsai HH, Tseng TY (2007) Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method. Thin Solid Films 516:155–158CrossRefADSGoogle Scholar
  3. Chassaing PM, Demangeot F, Paillard V (2007) Random telegraph signals in n-type ZnO nanowire field effect transistors at low temperature. Appl Phys Lett 91:053107CrossRefADSGoogle Scholar
  4. Damontea LC, Mendoza Ze′lisa LA, Soucase BM (2004) Nanoparticles of ZnO obtained by mechanical milling. Powder Technol 148:15–19CrossRefGoogle Scholar
  5. Fan HJ, Fuhrmann B, Scholzl R, Himcinschi C, Berger A, Leipner H, Dadgar A, Krost A, Christiansen S, Gösele U, Zacharias M (2006) Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotechnology 17:S231–S239CrossRefADSGoogle Scholar
  6. Femg YJ, Ming LY, Wei LH, Chun LY, Hui LB, Wu FX et al (2005) Growth and properties of ZnO nanotubes grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy. J Cryst Growth 280:206–211. doi:10.1016/j.jcrysgro.2005.03.045 CrossRefADSGoogle Scholar
  7. Gruber Th, Kichner C, Kling R, Reuss F, Waag A, Bertram F, Forster D, Christen J, Schreck M (2003) Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy. Appl Phys Lett 83:3290–3292CrossRefADSGoogle Scholar
  8. Han D, Ren XL, Chen D, Tang FQ, Wang D, Ren J (2005) Preparation and photocatalytic property of ZnO nanoparticles. Photogr Sci Photochem 23:414Google Scholar
  9. Heo YW, Kaufman M, Pruessner K (2003) Optical properties of Zn1−xMgxO nanorods using catalysis-driven molecular beam epitaxy. Solid-State Electron 47:2269–2273CrossRefADSGoogle Scholar
  10. Hsu HC, Wu CY, Cheng HM, Wang ZY, Zhao JW, Zhang LD (2006) Band gap engineering and stimulated emission of ZnMgO nanowires. Appl Phys Lett 89:013101CrossRefADSGoogle Scholar
  11. Ji Z, Zhao S, Wang C (2005) ZnO nanoparticle films prepared by oxidation of metallic zinc in H2O2 solution and subsequent process. Mater Sci Eng B 117:63–66CrossRefGoogle Scholar
  12. Jie J, Wang G, Han X, Yu Q, Liao Y, Li G, Hou JG (2004) Indium-doped zinc oxide nanobelts. Chem Phys Lett 387:466–470CrossRefADSGoogle Scholar
  13. Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596CrossRefGoogle Scholar
  14. Kim KJ, Park YR (2001) Large and abrupt optical band gap variation in In-doped ZnO. Appl Phys Lett 78:475CrossRefADSGoogle Scholar
  15. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572. doi:10.1021/jp980730h CrossRefGoogle Scholar
  16. Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang ZK, Wong GKL, Matsumoto Y, Koinuma H (2000) Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl Phys Lett 77:2204CrossRefADSGoogle Scholar
  17. Rajalakshmia M, Arora AK, Bender BS, Mahamuni S (2000) Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 87:2445CrossRefADSGoogle Scholar
  18. Ramakrishna G, Ghosh HN (2003) Effect of particle size on the reactivity of quantum size ZnO nanoparticles and charge-transfer dynamics with adsorbed catechols. Langmuir 19:3006–3012CrossRefGoogle Scholar
  19. Roy VAL, Djurišic AB, Chan WK, Gao J, Lui HF, Surya C (2003) Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl Phys Lett 83:141–143CrossRefADSGoogle Scholar
  20. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J Chem Eng Jpn 28:288–293CrossRefGoogle Scholar
  21. Seo DJ, Park SB, Kang YC (2003) Formation of ZnO, MgO and NiO nanoparticles from aqueous droplets in flame reactor. J Nanopart Res 5:199–210CrossRefGoogle Scholar
  22. Tani K, Mädler L, Pratsinis SE (2002) Homogeneous ZnO nanoparticles by flame spray pyrolysis. J Nanopart Res 4:337–343CrossRefGoogle Scholar
  23. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200. doi:10.1016/j.jhazmat.2007.12.033 PubMedCrossRefGoogle Scholar
  24. Usui H, Shimizu Y, Sasaki T, Koshizaki N (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124. doi:10.1021/jp046747j PubMedCrossRefGoogle Scholar
  25. van Dijken A, Makkinje J, Meijerink A (2001) The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. J Lumin 92:323–328CrossRefGoogle Scholar
  26. Zhao QX, Willander M, Morjan RE, Hu QH, Campbell EEB (2003) Optical recombination of ZnO nanowires grown on sapphire and Si substrates. Appl Phys Lett 83:165–167. doi:10.1063/1.1591069 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hui Li
    • 1
  • Yongzhe Zhang
    • 1
  • Xiaojun Pan
    • 1
  • Hongliang Zhang
    • 1
  • Tao Wang
    • 1
  • Erqing Xie
    • 1
  1. 1.School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations