Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 923–929 | Cite as

Uniform Fe3O4–PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres

  • Xiaocong Wang
  • Saide Tang
  • Jing Liu
  • Ziqiong He
  • Lijuan An
  • Chenxi Zhang
  • Jingmei Hao
  • Wei Feng
Research Paper

Abstract

Core–shell multifunctional composite spheres consisting of Fe3O4–polyaniline (PANi) shell and polystyrene (PS) core were fabricated using core–shell-structured sulfonated PS spheres (with uniform diameter of 250 nm) as templates. PANi was doped in situ by sulfonic acid resulting the composite spheres are well conductive. Dissolved with solvent, PS cores were removed from the core–shell composite spheres and hollow Fe3O4–PANi spheres were obtained. Removing the PANi and PS components by calcinations produced hollow Fe3O4 spheres. The cavity size of the hollow spheres was uniformly approximate to 190 nm and the shell thickness was 30 nm. The cavity size and the shell thickness can be synchronously controlled by varying the sulfonation time of the PS templates. The shell thickness in size range was of 20–86 nm when the sulfonation time was changed from 1 to 4 h. These resulting spheres could be arranged in order by self-assembly of the templates. Both the Fe3O4–PANi/PS composite spheres and the hollow Fe3O4 spheres exhibit a super-paramagnetic behavior. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder scattering were used to characterize these as-prepared spheres.

Keywords

Hollow spheres Composite spheres Polyaniline Multifunction Super-paramagnetic Nanomaterial 

Supplementary material

11051_2008_9486_MOESM1_ESM.doc (66 kb)
MOESM1 (DOC 66 kb)

References

  1. Arshady R, Margel S, Pichot C et al (1999) Functionalization of performed microcapsules [A]. Microspheres, microcapsules and liposomes [C]. Citus Books, LondonGoogle Scholar
  2. Bartlett PN, Birkin PR, Ghanem MA et al (2001) Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates. J Mater Chem 11:849–852. doi:10.1039/b006992m CrossRefGoogle Scholar
  3. Cao H, Xu Z, Sang H et al (2001) An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior. J Mater Chem 11(3):958–960. doi:10.1039/b006474m CrossRefGoogle Scholar
  4. Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419. doi :10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9CrossRefGoogle Scholar
  5. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22. doi :10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-NCrossRefGoogle Scholar
  6. Caruso F (2002) Engineering of core-shell particles and hollow capsules. In: Rosoff M (ed) Nano-surface chemistry. Marcel Dekker, NewYorkGoogle Scholar
  7. Caruso F (2003) Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly. Top Curr Chem 226 & 227:145–168CrossRefGoogle Scholar
  8. Fannin PC, Charles SW, Vincent D et al (2002) Measurement of the high-frequency complex permittivity and conductivity of magnetic fluids. J Magn Magn Mater 252:80–82. doi:10.1016/S0304-8853(02)00604-2 CrossRefADSGoogle Scholar
  9. Göltner CG (1999) Porous solids from rigid colloidal templates: morphogenesis. Angew Chem Int Ed Engl 38:3155–3156. doi :10.1002/(SICI)1521-3773(19991102)38:21<3155::AID-ANIE3155>3.0.CO;2-QPubMedCrossRefGoogle Scholar
  10. Hohnholz D, Okuzaki H, MacDiarmid AG (2005) Plastic electronic devices through line patterning of conducting polymers. Adv Funct Mater 15:51–56. doi:10.1002/adfm.200400241 CrossRefGoogle Scholar
  11. Nadian A, Lindblom L (2002) Studies on the development of a microencapsulated delivery system for norbormide, a species specific acute rodenticide. Int J Pharm 242:63–68. doi:10.1016/S0378-5173(02)00142-4 PubMedCrossRefGoogle Scholar
  12. Porter TL, Eastman MP, Zhang DY et al (1997) Surface polymerization of organic monomers on Cu(II)-exchanged hectorite. J Phys Chem B 101(51):11106–11111. doi:10.1021/jp9703521 CrossRefGoogle Scholar
  13. Smith JA, Josowicz M, Janata J (2003) Polyaniline-gold nanocomposite system. J Electrochem Soc 150:E384–E388. doi:10.1149/1.1589762 CrossRefGoogle Scholar
  14. Soeya S, Hayakawa J, Takahashi H et al (2002) Development of half-metallic ultrathin Fe3O4 films for spin-transport devices. Appl Phys Lett 80:823–825. doi:10.1063/1.1446995 CrossRefADSGoogle Scholar
  15. Sorenson TA, Morton SA, Waddill GD et al (2002) Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. J Am Chem Soc 124:7604–7609. doi:10.1021/ja0201101 PubMedCrossRefGoogle Scholar
  16. Tartaj P, Morales MD, Veintemillas-Verdaguer S et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R182–R197. doi:10.1088/0022-3727/36/13/202 CrossRefADSGoogle Scholar
  17. Vickreva O, Kalinina O, Kumacheva E (2000) Colloid crystal growth under oscillatory shear. Adv Mater 12:110–112. doi :10.1002/(SICI)1521-4095(200001)12:2<110::AID-ADMA110>3.0.CO;2-XCrossRefGoogle Scholar
  18. Wang J, Chen QW, Zeng C et al (2004) Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater 16:137–140. doi:10.1002/adma.200306136 CrossRefGoogle Scholar
  19. Xu J, Li X, Liu J et al (2005) Solution route to inorganic nanobelt-conducting organic polymer core-shell nanocomposites. J Polym Sci Part Polym Chem 43:2892–2900. doi:10.1002/pola.20769 CrossRefGoogle Scholar
  20. Yang Y, Chu Y, Yang FY et al (2005) Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template. Mater Chem Phys 92(1):164–171. doi:10.1016/j.matchemphys.2005.01.007 CrossRefGoogle Scholar
  21. Zhang ZM, Wan MX (2003) Nanostructures of polyaniline composites containing nano-magnet. Synth Met 132:205–212. doi:10.1016/S0379-6779(02)00447-2 CrossRefGoogle Scholar
  22. Zhang L, Wan M, Wei Y (2006) Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant. Macromol Rapid Commun 27:366–371. doi:10.1002/marc.200500760 MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xiaocong Wang
    • 1
    • 2
  • Saide Tang
    • 2
  • Jing Liu
    • 1
  • Ziqiong He
    • 3
  • Lijuan An
    • 1
  • Chenxi Zhang
    • 1
  • Jingmei Hao
    • 1
  • Wei Feng
    • 2
  1. 1.College of ScienceTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Tianjin Medical CollegeTianjinPeople’s Republic of China

Personalised recommendations