Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 731–736 | Cite as

Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation

Brief Communication

Abstract

Large-scale synthesis of copper sulfide (CuS) nanotubes with uniform size could be achieved via a facile hydrothermal method. The whole process could be adjusted to prepare CuS with different nanostructures by simply changing the concentration of NaOH or reaction temperature while keeping other conditions unchanged. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Photoluminescence (PL) spectroscopy were used to characterize the products. The as-prepared CuS nanotubes showed good photocatalytic activity of degrading eosin Y under UV-vis light irradiation, which indicated the potential application of the CuS nanotubes in eliminating pollution and environmental protection.

Keywords

Hydrothermal method Semiconductor Nanotubes Photocatalysis Colloids 

References

  1. Cao MH, Hu CW, Wang YH et al (2003) A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem Commun 1884–1885Google Scholar
  2. Crespo O, Gimeno MC, Laguna A et al (2007) Highly luminescent gold(I)–silver(I) and gold(I)–copper(I) chalcogenide clusters. Chem Eur J 13:235–246CrossRefGoogle Scholar
  3. Dobley A, Ngala K, Yang SF et al (2001) Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry. Chem Mater 13:4382–4386CrossRefGoogle Scholar
  4. Dobson KD, Fisher IV, Hodes G, Cahen D (2001) Stabilizing CdTe/CdS solar cells with Cu-containing contacts to p-CdTe. Adv Mater 13:1495–1499CrossRefGoogle Scholar
  5. Fang YP, Xu AW, You LP et al (2003) Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Adv Funct Mater 13:955–960CrossRefGoogle Scholar
  6. Fang Z, Tang KB, Gao LS et al (2006a) Oriented attachment growth of LaMn2O5+δ nanorods. Mater Lett 60:1347–1349CrossRefGoogle Scholar
  7. Fang Z, Tang KB, Shen GZ et al (2006b) Self-assembled ZnO 3D flowerlike nanostructures. Mater Lett 60:2530–2533CrossRefGoogle Scholar
  8. Gu F, Li CZ, Wang SF (2007) Solution-chemical synthesis of carbon nanotube/ZnS nanoparticle core/shell heterostructures. Inorg Chem 46:5343–5348PubMedCrossRefGoogle Scholar
  9. Hu JQ, Bando Y, Zhan JH et al (2004) Sn-filled single-crystalline wurtzite-type ZnS nanotubes. Angew Chem Int Ed 43:4606–4609CrossRefGoogle Scholar
  10. Iijima S (1991) Carbon nanotubes. Nature 354:56–58CrossRefADSGoogle Scholar
  11. Journet C, Maser WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRefGoogle Scholar
  12. Kalyanikutty KP, Nikhila M, Maitra U et al (2006) Hydrogel-assisted synthesis of nanotubes and nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment. Chem Phys Lett 432:190–194CrossRefADSGoogle Scholar
  13. Kempa K, Kimball B, Rybczynski J et al (2003) Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett 3:13–18CrossRefGoogle Scholar
  14. Liang LF, Xu HF, Su Q et al (2004), Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes. Inorg Chem 43:1594–1596Google Scholar
  15. Lu QY, Gao F, Zhao DY (2002) One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett 2:725–728CrossRefGoogle Scholar
  16. Muhr HJ, Krumeich F, Schönholzer UP et al (2000) Vanadium oxide nanotubes—a new flexible vanadate nanophase. Adv Mater 12:231–234CrossRefGoogle Scholar
  17. Ni Y, Liu H, Wang F et al (2004) Self-assembly of CuS nanoparticles to solid, hollow, spherical and tubular structures in a simple aqueous-phase reaction. Appl Phys A 79:2007–2011CrossRefADSGoogle Scholar
  18. Park TJ, Mao YB, Wong SS (2004) Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem Commun 2708–2709Google Scholar
  19. Peralta-Inga Z, Lane P, Murray JS et al (2003) Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano Lett 3:21–28CrossRefGoogle Scholar
  20. Sander MS, Gao H (2005) Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods. J Am Chem Soc 127:12158–12159PubMedCrossRefGoogle Scholar
  21. Schlittler RR, Seo JW, Gimzewski JK et al (2001) Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 292:1136–1139PubMedCrossRefADSGoogle Scholar
  22. Shen GZ, Bando Y, Ye CH et al (2006) Single-crystal nanotubes of II3–V2 semiconductors. Angew Chem Int Ed 45:7568–7572CrossRefGoogle Scholar
  23. Souza Filho AG, Ferreira OP, Santos EJG et al (2004) Raman spectra in vanadate nanotubes revisited. Nano Lett 4:2099–2104CrossRefGoogle Scholar
  24. Sun YG, Xia YN (2004) Multiple-walled nanotubes made of metals. Adv Mater 16:264–268CrossRefGoogle Scholar
  25. Tan CH, Zhu YL, Lu R et al (2005) Synthesis of copper sulfide nanotube in the hydrogel system. Mater Chem Phys 91:44–47CrossRefGoogle Scholar
  26. Wu CY, Yu SH, Chen SF et al (2006) Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J Mater Chem 16:3326–3311CrossRefGoogle Scholar
  27. Yan CL, Xue DF (2008) Formation of Nb2O5 nanotube arrays through phase transformation. Adv Mater 20:1055–1058CrossRefGoogle Scholar
  28. Yao ZY, Zhu X, Wu CZ et al (2007) Fabrication of micrometer-scaled hierarchical tubular structures of CuS assembled by nanoflake-built microspheres using an in situ formed Cu(I) complex as a self-sacrificed template. Cryst Growth Des 7:1256–1261CrossRefGoogle Scholar
  29. Yin LW, Bando Y, Zhan JH et al (2005) Self-assembled highly faceted Wurtizite-Type ZnS single-crystalline nanotubes with hexagonal cross-section. Adv Mater 17:1972–1977CrossRefGoogle Scholar
  30. Yu SF, Welp U, Hua LZ et al (2005) Fabrication of palladium nanotubes and their application in hydrogen sensing. Chem Mater 17:3445–3450CrossRefGoogle Scholar
  31. Yu XL, Cao CB, Zhu HS et al (2007) Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv Funct Mater 17:1397–1401CrossRefGoogle Scholar
  32. Zang WX, Wen XG, Yang SH et al (2003) Single-crystalline scroll-type nanotubes arrays of copper hydroxide synthesized at room temperature. Adv Mater 15:822–825CrossRefGoogle Scholar
  33. Zhan JH, Bando Y, Hu JQ et al (2004) Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg Chem 43:2462–2464PubMedCrossRefGoogle Scholar
  34. Zhang WX, Xu J, Yang ZH et al (2007) Mesoscale organization of Cu7S4 nanowires: formation of novel sheath-like nanotube array. Chem Phys Lett 434:256–259CrossRefADSGoogle Scholar
  35. Zhou J, Liu J, Wang XD et al (2007a) Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays. Small 4:622–626CrossRefGoogle Scholar
  36. Zhou Y, Kogiso M, He C et al (2007b) Fluorescent nanotubes consisting of CdS-embedded bilayer membranes of a peptide lipid. Adv Mater 19:1055–1058CrossRefGoogle Scholar
  37. Zhu Y, Guo XK, Jin JF et al (2007) Controllable synthesis of CuS nanotubes and nanobelts using lyotropic liquid crystal templates. J Mater Sci 42:1042–1045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations