Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 895–901 | Cite as

Kinetic Monte Carlo simulations of Au clusters on Si(111)-7 × 7 surface

  • Guran Chen
  • Yinghui Zhou
  • Shuping Li
  • Junyong Kang
Research Paper


Self-assembled growth of Au nanoclusters on the Si(111)-7 × 7 surface has been studied using kinetic Monte Carlo simulations. A model considering various atomic processes of deposition, adsorption, diffusion, nucleation, and aggregation is introduced, and the main energetic parameters are optimized based on the experimental results. The evolution of surface morphology during Au growth is simulated in real time, from which the atomic behaviors of Au could be really captured. Most of Au atoms diffuse on the substrate in the very early stage of growth, and Au clusters nucleate and grow with the increasing coverage. The competition among various atomic processes results in the distinct distribution of Au clusters under different coverages. The growth conditions are further optimized, showing that the higher uniformity of Au clusters would be obtained at a low deposition rate and an optimal substrate temperature of about 380 K.


Nanoclusters Growth kinetics Modeling and simulation Selfassembly 


  1. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44:1–49. doi:10.1016/S0167-5729(01)00015-2 CrossRefADSGoogle Scholar
  2. Chizhov I, Lee G, Willis RF (1997) Initial stages of Au adsorption on the Si(111)-(7 × 7) surface studied by scanning tunneling microscopy. Phys Rev B 56:12316–12320. doi:10.1103/PhysRevB.56.12316 CrossRefADSGoogle Scholar
  3. Cho K, Kaxiras E (1997) Intermittent diffusion on the reconstructed Si(111) surface. Europhys Lett 39:287–292. doi:10.1209/epl/i1997-00349-x CrossRefADSGoogle Scholar
  4. Cho K, Kaxiras E (1998) Diffusion of adsorbate atoms on the reconstructed Si(111) surface. Surf Sci 396:L261–L266. doi:10.1016/S0039-6028(97)00848-0 CrossRefGoogle Scholar
  5. Dabrowski J, Mússig HJ (2000) Silicon surfaces and formation of interfaces. World Scientific, SingaporeGoogle Scholar
  6. Ghose SK, Bennett PA, Robinson IK (2005) Clustering of Au on the faulted half of the Si(111)-7 × 7 unit cell. Phys Rev B 71:073407. doi:10.1103/PhysRevB.71.073407 CrossRefADSGoogle Scholar
  7. Kocán P, Sobotík P, Ošt’ádal I, Kotrla M (2004) Self-organized growth of Ag islands on Si(111)-(7 × 7)-optimization of an STM experiment by means of KMC simulations. Surf Sci 566:216–220. doi:10.1016/j.susc.2004.06.133 CrossRefADSGoogle Scholar
  8. Li JL, Jia JF, Liang XJ, Liu X, Wang JZ, Xue QK et al (2002) Spontaneous assembly of perfectly ordered identical-size nanocluster arrays. Phys Rev Lett 88:066101. doi:10.1103/PhysRevLett.88.066101 PubMedCrossRefADSGoogle Scholar
  9. Mysliveček J, Sobotík P, Ošt’ádal I, Jarolímek T, Šmilauer P (2001) Unconventional features of Ag epitaxy on the Si(111)7 × 7 surface. Phys Rev B 63:045403. doi:10.1103/PhysRevB.63.045403 CrossRefADSGoogle Scholar
  10. Osiecki J, Kato H, Kasuya A, Suto S (2006) Diffusion and clustering of Ag atoms on Si(111)7 × 7 surface. Jpn J Appl Phys 45:2056–2058. doi:10.1143/JJAP.45.2056 CrossRefADSGoogle Scholar
  11. Polop C, Vasco E, Martín-Gago JA, Sacedón JL (2002) Diffusion and nucleation of yttrium atoms on Si(111)7 × 7: a growth model. Phys Rev B 66:085324. doi:10.1103/PhysRevB.66.085324 CrossRefADSGoogle Scholar
  12. Ratsch C, Ruiggerone P, Scheffler M, Zhang ZY, Lagally MG (eds) (1998) Morphological organization in epitaxial growth and removal. World Scientific, SingaporeGoogle Scholar
  13. Sobotík P, Kocán P, Ošt’ádal I (2003) Direct observation of Ag intercell hopping on the Si(111)-(7 × 7) surface. Surf Sci 537:L442–L446. doi:10.1016/S0039-6028(03)00608-3 CrossRefGoogle Scholar
  14. Vasco E (2005) Mechanisms of preferential adsorption on the Si(111)7 × 7 surface. Surf Sci 575:247–259. doi:10.1016/j.susc.2004.11.006 CrossRefADSGoogle Scholar
  15. Vitali L, Ramsey MG, Netzer FP (1999) Nanodot formation on the Si(111)-(7 × 7) surface by adatom trapping. Phys Rev Lett 83:316–319. doi:10.1103/PhysRevLett.83.316 CrossRefADSGoogle Scholar
  16. Vvedensky DD (2004) Multiscale modelling of nanostructures. J Phys Condens Mater 16:R1537–R1576. doi:10.1088/0953-8984/16/50/R01 CrossRefADSGoogle Scholar
  17. Wang K, Zhang C, Loy MMT, Xiao X (2005) Time-dependent tunneling spectroscopy for studying surface diffusion confined in nanostructures. Phys Rev Lett 94:036103. doi:10.1103/PhysRevLett.94.036103 PubMedCrossRefADSGoogle Scholar
  18. Wang DY, Chen LJ, He W, Zhan QF, Cheng ZH (2006a) Preferential arrangement of uniform Mn nanodots on Si(111)-7 × 7 surface. J Phys D Appl Phys 39:347–350. doi:10.1088/0022-3727/39/2/016 CrossRefADSGoogle Scholar
  19. Wang DY, Wu HY, Chen LJ, He W, Zhan QF, Cheng ZH (2006b) Growth of honeycomb-symmetrical Mn nanodots arrays on Si(111)-7 × 7 surfaces. J Phys Condens Mater 18:6357–6363. doi:10.1088/0953-8984/18/27/018 CrossRefADSGoogle Scholar
  20. Wu K, Fujikawa Y, Briere T, Kumar V, Kawazoe Y, Sakurai T (2005) Dynamics and nano-clustering of alkali metals (Na, K) on the Si(111)-(7 × 7) surface. Ultramicroscopy 105:32–41. doi:10.1016/j.ultramic.2005.06.015 CrossRefGoogle Scholar
  21. Zhang C, Chen G, Wang K, Yang H, Su T, Chan CT et al (2005) Experimental and theoretical investigation of single Cu, Ag, and Au atoms adsorbed on Si(111)-(7 × 7). Phys Rev Lett 94:176104. doi:10.1103/PhysRevLett.94.176104 PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Guran Chen
    • 1
  • Yinghui Zhou
    • 1
  • Shuping Li
    • 1
  • Junyong Kang
    • 1
  1. 1.Fujian Key Lab of Semiconductor Materials and Applications, Department of PhysicsXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations