Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 903–908

Biosynthesis of different morphologies of CaCO3 nanomaterial assisted by thermophilic strains HEN-Qn1

Research Paper


Thermophilic bacterial strains HEN-Qn1 were incubated at 60 °C in a solution containing calcium chloride. With slow release of CO2 metabolic end products from the bacteria, CaCO3 nanomaterials were found after 12 h through a transmission electron microscope (TEM). CaCO3 nanorods were obtained extracellularly, whereas a unique morphology of nanosphere was observed intracelluarly. A single crystal was further characterized by electron pattern (ED) and X-ray powder diffraction (XRD). Moreover, a putative mechanism has been proposed based on theoretical analyses and experimental evidences. These results indicated that thermophilic bacteria had a well-controlled effect during the crystal growth of inorganic materials, which provided us a promising application of bacteria in biosynthesis of nanomaterials.


Biosynthesis CaCO3 Bacteria Nanorods Nanospheres Extracellularly Intracellularly Nanomaterial 


  1. Absar A, Debabrate R, Murali S (2004) Biogenic calcium carbonate: calcite crystals of variable morphology by the reaction of aqueous Ca2+ ions with fungi. Adv Funct Mater 14:1075–1080. doi:10.1002/adfm.200400005 CrossRefGoogle Scholar
  2. Aizenberg J, Muller DA, Grazul JL, Hamman DR (2003) Direct fabrication of large micropatterned single crystals. Science 299:1205–1208. doi:10.1126/science.1079204 PubMedCrossRefADSGoogle Scholar
  3. Bellomo EG, Wyrsta MD, Pakstis L (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3:244–248. doi:10.1038/nmat1093 PubMedCrossRefADSGoogle Scholar
  4. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379. doi:10.1126/science.170679 PubMedCrossRefGoogle Scholar
  5. Chen Y, Wu QS, Ding YP (2007) Stepwise assembly of nanoparticles, -tubes, -rods, and -wires in reverse micelle systems. Eur J Inorg Chem 31:4906–4910. doi:10.1002/ejic.200700196 CrossRefGoogle Scholar
  6. Colfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365. doi:10.1002/anie.200200562 CrossRefGoogle Scholar
  7. Deng ZX, Li LB, Li YD (2003) Novel inorganic-organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine. Inorg Chem 42:2331–2341. doi:10.1021/ic025846d PubMedCrossRefGoogle Scholar
  8. Li YD, Wang JW, Deng ZX (2001) Bismuth nanotubes: a rational low-temperature synthetic route. J Am Chem Soc 123:9904–9905. doi:10.1021/ja016435j PubMedCrossRefGoogle Scholar
  9. Li L, Wu QS, Ding YP (2004a) Living bio-membrane bi-template route for simultaneous synthesis of lead selenide nanorods and nanotubes. Nanotechnology 15:1877–1881. doi:10.1088/0957-4484/15/12/033 CrossRefADSGoogle Scholar
  10. Li XY, Wu XW, Gao YY, Zhou QY (2004b) Domestic waste composting with complex thermophilic microbial inoculation. J Tongji Univ 32:367–371Google Scholar
  11. Mao CB, Daniel JS, Brian DR (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217. doi:10.1126/science.1092740 PubMedCrossRefGoogle Scholar
  12. Mehmet S, Candan T, Jen AKY, Klaus S, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585. doi:10.1038/nmat964 CrossRefADSGoogle Scholar
  13. Rautaray D, Ahmad A, Sastry M (2003) Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. J Am Chem Soc 125:14656–14657. doi:10.1021/ja0374877 PubMedCrossRefGoogle Scholar
  14. Ronald S, Mitchell JH, Jodi SB (2004) Structural and spectral features of selenium nanoshperes produce by Se-resting bacteria. Appl Environ Microbiol 70:52–56. doi:10.1128/AEM.70.1.52-60.2004 CrossRefGoogle Scholar
  15. Scott AW, Michael TK, Joseph AZ (1997) Encapsulation of bilayer vesicles by self-assembly. Nature 387:61–64. doi:10.1038/387061a0 CrossRefGoogle Scholar
  16. Sean AD, Dujardin E, Mann S (2003) Biomolecular inorganic materials chemistry. Curr Opin Solid State Mater Sci 7:273–281. doi:10.1016/j.cossms.2003.09.013 CrossRefGoogle Scholar
  17. Stephen M, Brigid RH, Sundara R, Birchall JD (1988) Controlled crystallization of CaCO3 under stearic acid monolayers. Nature 334:692–695. doi:10.1038/334692a0 CrossRefGoogle Scholar
  18. Sun QH, Deng YL (2004) Synthesis of micrometer to nanometer CaCO3 particles via mass restriction method in an emulsion liquid membrane process. J Colloid Interface Sci 278:376–382. doi:10.1016/j.jcis.2004.06.013 PubMedCrossRefGoogle Scholar
  19. Wayne S, Dietmar P, Uwe BS, Stephen M (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587. doi:10.1038/39287 CrossRefGoogle Scholar
  20. Xiang L, Xiang Y, Wen Y (2004) Formation of CaCO3 nanoparticles in the presence of terpineol. Mater Lett 58:959–965. doi:10.1016/j.matlet.2003.07.034 CrossRefGoogle Scholar
  21. Xu X, Han JT, Cho K (2004) Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem Mater 16:1740–1746. doi:10.1021/cm035183d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Life Sciences and TechnologyTongji UniversityShanghaiChina
  2. 2.Department of ChemistryTongji UniversityShanghaiChina
  3. 3.Key Laboratory of Tea Biochemistry & Biotechnology of Ministry of Agriculture & Ministry of EducationAnhui Agricultural UniversityHefeiChina

Personalised recommendations