Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 701–706 | Cite as

Synthesis of α- and β-FeOOH iron oxide nanoparticles in non-ionic surfactant medium

  • S. Bashir
  • R. W. McCabe
  • C. Boxall
  • M. S. Leaver
  • D. Mobbs
Research Paper

Abstract

Forced hydrolysis of Fe(III) ions in acidic media was performed under controlled synthetic conditions to produce α- and β-FeOOH iron oxides. The forced hydrolysis synthesis was carried out, separately, in an aqueous medium and the lamellar lyotropic liquid crystalline phase of a commercial non-ionic surfactant/water system. The FT-IR analyses confirmed formation of α- and β-FeOOH iron oxides in the aqueous and the surfactant media with slight formation of ferrihydrite and haematite. TEM micrographs have shown that particles formed in the lamellar lyotropic phase are smaller than those produced in the aqueous medium with their smallest size dimension being constrained in the nanometre scale with a size ranging between 5 and 100 nm. Particles produced in the nanoscale size appeared to have different optical properties compared to their counterparts produced in the microscale size.

Keywords

Templating synthesis Iron oxide nanoparticles Lyotropic mesophases 

References

  1. Atkinson RJ, Posner AM, Quirk JP (1968) Crystal nucleation in Fe(III) solutions and hydroxide gels. J Inorg Nucl Chem 30:2371–2381. doi:10.1016/0022-1902(68)80247-7 CrossRefGoogle Scholar
  2. Attard GS, Edgar M, Goltner CG (1998) Inorganic nanostructures from lyotropic liquid crystal phases. Acta Mater 46(3):751–758. doi:10.1016/S1359-6454(97)00256-5 CrossRefGoogle Scholar
  3. Bewick A, Kalaji M, Larramona G (1991) In-situ infrared spectroscopic study of the anodic oxide film on iron in alkaline solutions. J Electroanal Chem 318:207–221. doi:10.1016/0022-0728(91)85304-8 CrossRefGoogle Scholar
  4. Blesa MA, Matijević E (1989) Phase transformation of iron oxides, oxyhydroxides, and hydrous oxides in aqueous media. Adv Colloid Interface Sci 29:173–221. doi:10.1016/0001-8686(89)80009-0 CrossRefGoogle Scholar
  5. Braun PV, Osenar P, Stupp SI (1996) Semiconducting superlattices templated by molecular assemblies. Nature 380:325–328. doi:10.1038/380325a0 CrossRefADSGoogle Scholar
  6. Carale TR, Pham QT, Blankschtein D (1994) Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir 10:109–121. doi:10.1021/la00013a016 CrossRefGoogle Scholar
  7. Cornell RM, Schwertmann U (1996) The iron oxides. VCH Publishers, Weinheim and New YorkGoogle Scholar
  8. Dousma J, De Bruyn PL (1978) Hydrolysis-precipitation studies of iron solutions aging studies and the model for precipitation from Fe(III) nitrate solutions. J Colloid Interface Sci 64(1):154–170. doi:10.1016/0021-9797(78)90345-4 CrossRefGoogle Scholar
  9. Ishikawa T, Nitta S, Kondo S (1986) Fourier-transformation infrared spectroscopy of colloidal α-, β-and γ-ferric oxide hydroxides. J Chem Soc Faraday Trans I 82:2401–2410. doi:10.1039/f19868202401 CrossRefGoogle Scholar
  10. Jonströmer M, Strey R (1992) Nonionic bilayers in dilute solutions: effect of additives. J Phys Chem 96:5993–6000. doi:10.1021/j100193a064 CrossRefGoogle Scholar
  11. Kandori K, Okamoto N, Ishikawa T (2002) Preparation of nanoporous micrometer scale hematite particles by a forced hydrolysis reaction in the presence of polyethylene glycol. Langmuir 18:2895–2900. doi:10.1021/la011571n CrossRefGoogle Scholar
  12. Kellaway L, Warr GG (1997) The effect of head-group on selective counterion binding to cationic surfactants. J Colloid Interface Sci 193:312–314. doi:10.1006/jcis.1997.5050 PubMedCrossRefGoogle Scholar
  13. Knight RJ, Sylva RN (1974) Precipitation in hydrolysed iron(III)-solutions. J Inorg Nucl Chem 36:591–597. doi:10.1016/0022-1902(74)80119-3 CrossRefGoogle Scholar
  14. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesised by a liquid-crystal template mechanism. Nature 359:710–712. doi:10.1038/359710a0 CrossRefADSGoogle Scholar
  15. Matijević E, Cimas S (1987) Formation of uniform colloidal iron(III) oxides in ethylene glycol–water solutions. Colloid Polym Sci 265:155–163. doi:10.1007/BF01412759 CrossRefGoogle Scholar
  16. Murphy JP, Posner AM, Quirk JP (1976) Characterisation of partially neutralised ferric nitrate solutions. J Colloid Interface Sci 56(2):270–283. doi:10.1016/0021-9797(76)90253-8 CrossRefGoogle Scholar
  17. O’Sullivan E, Ward JI, Budd T (1994) Obvious and nonobvious influences of surfactants on formation of nanosized particles. Langmuir 10:2985–2995. doi:10.1021/la00021a023 CrossRefGoogle Scholar
  18. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276. doi:10.1021/la960319q CrossRefGoogle Scholar
  19. Rochester CH, Topham SA (1979) Infrared study of surface hydroxyl groups on goethite. J Chem Soc Faraday Trans I 75:591–602. doi:10.1039/f19797500591 CrossRefGoogle Scholar
  20. Schwertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner 31:277–284. doi:10.1346/CCMN.1983.0310405 CrossRefGoogle Scholar
  21. Van Der Woude JHA, De Bruyn PL (1984) Formation of colloidal dispersions from supersaturated iron(III) nitrate solutions. III. Development of goethite at room temperature. Colloids Surf 9:173–188. doi:10.1016/0166-6622(84)80156-0 CrossRefGoogle Scholar
  22. Weckler B, Lutz HD (1998) Lattice vibration spectra. Part xcv. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganeite (β), lepidocrocite (γ), and feroxyhite (δ). Eur J Solid State Inorg Chem 89:531–544. doi:10.1016/S0992-4361(99)80017-4 CrossRefGoogle Scholar
  23. Zhang Z, Boxall C, Kelsall GH (1993) Photoelectrophoresis of colloidal iron oxides 1. Hematite (α-Fe2O3). Colloids Surf A Physicochem Eng Asp 73:145–163. doi:10.1016/0927-7757(93)80013-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Bashir
    • 1
  • R. W. McCabe
    • 1
  • C. Boxall
    • 1
  • M. S. Leaver
    • 1
  • D. Mobbs
    • 1
  1. 1.Centre for Materials SciencePrestonUK

Personalised recommendations