Skip to main content
Log in

Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We studied the kinetics of the reduction of a gold precursor (HAuCl4) and the effect of the molar ratio (R) of sodium citrate, which was introduced from a seed solution, and the gold precursor on the shape evolution of gold nanomaterials in the presence of preformed 13 nm gold nanoparticles as seeds. The reduction of the gold precursor by sodium citrate was accelerated due to the presence of gold seeds. Nearly single-crystalline gold nanowires were formed at a very low R value (R = 0.16) in the presence of the seeds as a result of the oriented attachment of the growing gold nanoparticles. At a higher R value (R = 0.33), gold nanochains were formed due to the non-oriented attachment of gold nanoparticles. At a much higher R value (R = 1.32), only larger spherical gold nanoparticles grown from the seeds were found. In the absence of gold seeds, no single-crystalline nanowires were formed at the same R value. Our results indicate that the formation of the 1D nanostructures (nanochains and nanowires) at low R values is due to the attachment of gold nanoparticles along one direction, which is driven by the surface energy reduction, nanoparticle attraction, and dipole–dipole interaction between adjacent nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi M, Mori K, Sato Y, Pei LH (2004) Gold nanowire formation of 2-dimensional network structure with electric conductivity. J Chem Eng Jpn 37:604–608. doi:10.1252/jcej.37.604

    Article  CAS  Google Scholar 

  • Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712. doi:10.1021/jp962922n

    Article  CAS  Google Scholar 

  • Biggs S, Chow MK, Zukoski CF, Grieser F (1993) The role of colloidal stability in the formation of gold sols. J Colloid Interface Sci 160:511–513. doi:10.1006/jcis.1993.1430

    Google Scholar 

  • Biggs S, Mulvaney P, Zukoski CF, Grieser F (1994) Study of anion adsorption at the gold-aqueous solution interface by atomic-force microscopy. J Am Chem Soc 116:9150–9157. doi:10.1021/ja00099a033

    Article  CAS  Google Scholar 

  • Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728. doi:10.1021/la970982u

    Article  CAS  Google Scholar 

  • Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414. doi:10.1002/adma.200390095

    Article  CAS  Google Scholar 

  • Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709. doi:10.1021/la980929l

    Article  CAS  Google Scholar 

  • Cho KS, Talapin DV, Gaschler W, Murray CB (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127:7140–7147. doi:10.1021/ja050107s

    Article  PubMed  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    ADS  CAS  Google Scholar 

  • Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Freeman RG et al (1996) Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir 12:2353–2361. doi:10.1021/la950561h

    Article  CAS  Google Scholar 

  • Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620. doi:10.1038/415617a

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ha TH, Koo HJ, Chung BH (2007) Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C 111:1123–1130. doi:10.1021/jp066454l

    Article  CAS  Google Scholar 

  • Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445. doi:10.1021/ar9700365

    Article  CAS  Google Scholar 

  • Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633. doi:10.1126/science.291.5504.630

    Article  PubMed  ADS  CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a

    Article  PubMed  CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597. doi:10.1021/nl070472c

    Article  PubMed  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322. doi:10.1021/cm000662n

    Article  CAS  Google Scholar 

  • Kiely CJ, Fink J, Brust M, Bethell D, Schiffrin DJ (1998) Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396:444–446. doi:10.1038/24808

    Article  CAS  Google Scholar 

  • Kovtyukhova NI, Mallouk TE (2002) Nanowires as building blocks for self-assembling logic and memory circuits. Chem Eur J 8:4355–4363

    Article  Google Scholar 

  • Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang PD (2004) Nanoribbon waveguides for sub wavelength photonics integration. Science 305:1269–1273. doi:10.1126/science.1100999

    Article  PubMed  CAS  Google Scholar 

  • Lee K-H, Huang K-M, Tseng W-L, Chiu T-C, Lin Y-W, Chang H-T (2007) Manipulation of the growth of gold and silver nanomaterials on glass by seeding approach. Langmuir 23:1435–1442. doi:10.1021/la061880j

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Li M, Dujardin E, Girard C, Mann S (2005) One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv Mater 17:2553. doi:10.1002/adma.200500828

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426. doi:10.1021/jp9917648

    Article  CAS  Google Scholar 

  • Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13:1501. doi:10.1002/1521–4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  • Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232. doi:10.1038/nmat852

    Article  PubMed  ADS  CAS  Google Scholar 

  • Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM et al (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115. doi:10.1126/science.1081940

    Article  PubMed  ADS  CAS  Google Scholar 

  • Millstone JE, Park S, Shuford KL, Qin LD, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313. doi:10.1021/ja043245a

    Article  PubMed  CAS  Google Scholar 

  • Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214. doi:10.1002/adfm.200600066

    Article  CAS  Google Scholar 

  • Mohamed MB, Wang ZL, El-Sayed MA (1999) Temperature-dependent size-controlled nucleation and growth of gold nanoclusters. J Phys Chem A 103:10255–10259. doi:10.1021/jp9919720

    Article  CAS  Google Scholar 

  • Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82. doi:10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#

    Article  CAS  Google Scholar 

  • Pei LH, Mori K, Adachi M (2004) Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 and the shape stabilization. Langmuir 20:7837–7843. doi:10.1021/la049262v

    Article  PubMed  CAS  Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971. doi:10.1126/science.281.5379.969

    Article  PubMed  CAS  Google Scholar 

  • Pinta M (1978) Modern methods for trace element analysis. Ann Arbor Science Publishers, Ann Arbor

  • Rodrı’guez-Fernandez J, Perez-Juste J, Abajo FJGd, Liz-Marzan LM (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010. doi:10.1021/la060990n

    Article  Google Scholar 

  • Sun YG, Gates B, Mayers B, Xia YN (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168. doi:10.1021/nl010093y

    Article  MATH  CAS  Google Scholar 

  • Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679. doi:10.1021/nl034140t

    Article  CAS  Google Scholar 

  • Tang ZY, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240. doi:10.1126/science.1072086

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tao A, Sinsermsuksakul P, Yang PD (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45:4597–4601. doi:10.1002/anie.200601277

    Article  CAS  Google Scholar 

  • Tsai MH, Chen SY, Shen P (2004) Imperfect oriented attachment: Accretion and defect generation of nanosize rutile condensates. Nano Lett 4:1197–1201. doi:10.1021/nl0495763

    Article  CAS  Google Scholar 

  • Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452. doi:10.1021/jp003500n

    Article  CAS  Google Scholar 

  • Vasilev K, Zhu T, Wilms M, Gillies G, Lieberwirth I, Mittler S et al (2005) Simple, one-step synthesis of gold nanowires in aqueous solution. Langmuir 21:12399–12403. doi:10.1021/la052354f

    Article  PubMed  CAS  Google Scholar 

  • Wall JF, Grieser F, Zukoski CF (1997) Monitoring chemical reactions at the gold/solution interface using atomic force microscopy. J Chem Soc Faraday Trans 93:4017–4020. doi:10.1039/a704398h

    Article  CAS  Google Scholar 

  • Wei QH, Su KH, Durant S, Zhang X (2004) Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4:1067–1071. doi:10.1021/nl049604h

    Article  CAS  Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087

    Article  CAS  Google Scholar 

  • Zhang H, Wang D (2008) Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. Angew Chem Int Ed 47:3984–3987. doi:10.1002/anie.200705537

    Article  CAS  Google Scholar 

  • Zhang JL, Du JM, Han BX, Liu ZM, Jiang T, Zhang ZF (2006) Sonochemical formation of single-crystalline gold nanobelts. Angew Chem Int Ed 45:1116–1119. doi:10.1002/anie.200503762

    Article  CAS  Google Scholar 

  • Zou XQ, Ying EB, Dong SJ (2006) Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology 17:4758–4764. doi:10.1088/0957-4484/17/18/038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CMMI-0709287), Department of Defense Congressionally Directed Medical Research Programs (W81XWH07-1-0572), and the Oklahoma Center for the Advancement of Science and Technology (HR06-161S) for financial support. We thank Dr. R. Houser for using his spectrophotometer. We also thank Dr. F. Wang for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbin Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, P., Mao, C. Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires. J Nanopart Res 11, 885–894 (2009). https://doi.org/10.1007/s11051-008-9465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9465-1

Keywords

Navigation