Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 885–894 | Cite as

Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires

Research Paper


We studied the kinetics of the reduction of a gold precursor (HAuCl4) and the effect of the molar ratio (R) of sodium citrate, which was introduced from a seed solution, and the gold precursor on the shape evolution of gold nanomaterials in the presence of preformed 13 nm gold nanoparticles as seeds. The reduction of the gold precursor by sodium citrate was accelerated due to the presence of gold seeds. Nearly single-crystalline gold nanowires were formed at a very low R value (R = 0.16) in the presence of the seeds as a result of the oriented attachment of the growing gold nanoparticles. At a higher R value (R = 0.33), gold nanochains were formed due to the non-oriented attachment of gold nanoparticles. At a much higher R value (R = 1.32), only larger spherical gold nanoparticles grown from the seeds were found. In the absence of gold seeds, no single-crystalline nanowires were formed at the same R value. Our results indicate that the formation of the 1D nanostructures (nanochains and nanowires) at low R values is due to the attachment of gold nanoparticles along one direction, which is driven by the surface energy reduction, nanoparticle attraction, and dipole–dipole interaction between adjacent nanoparticles.


Gold nanoparticles Nanochains Nanowires Oriented attachment Nanostructure Synthesis 


  1. Adachi M, Mori K, Sato Y, Pei LH (2004) Gold nanowire formation of 2-dimensional network structure with electric conductivity. J Chem Eng Jpn 37:604–608. doi:10.1252/jcej.37.604 CrossRefGoogle Scholar
  2. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712. doi:10.1021/jp962922n CrossRefGoogle Scholar
  3. Biggs S, Chow MK, Zukoski CF, Grieser F (1993) The role of colloidal stability in the formation of gold sols. J Colloid Interface Sci 160:511–513. doi:10.1006/jcis.1993.1430 Google Scholar
  4. Biggs S, Mulvaney P, Zukoski CF, Grieser F (1994) Study of anion adsorption at the gold-aqueous solution interface by atomic-force microscopy. J Am Chem Soc 116:9150–9157. doi:10.1021/ja00099a033 CrossRefGoogle Scholar
  5. Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728. doi:10.1021/la970982u CrossRefGoogle Scholar
  6. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414. doi:10.1002/adma.200390095 CrossRefGoogle Scholar
  7. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709. doi:10.1021/la980929l CrossRefGoogle Scholar
  8. Cho KS, Talapin DV, Gaschler W, Murray CB (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127:7140–7147. doi:10.1021/ja050107s PubMedCrossRefGoogle Scholar
  9. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22ADSGoogle Scholar
  10. Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Freeman RG et al (1996) Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir 12:2353–2361. doi:10.1021/la950561h CrossRefGoogle Scholar
  11. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620. doi:10.1038/415617a PubMedCrossRefADSGoogle Scholar
  12. Ha TH, Koo HJ, Chung BH (2007) Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C 111:1123–1130. doi:10.1021/jp066454l CrossRefGoogle Scholar
  13. Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445. doi:10.1021/ar9700365 CrossRefGoogle Scholar
  14. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633. doi:10.1126/science.291.5504.630 PubMedCrossRefADSGoogle Scholar
  15. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a PubMedCrossRefGoogle Scholar
  16. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597. doi:10.1021/nl070472c PubMedCrossRefGoogle Scholar
  17. Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322. doi:10.1021/cm000662n CrossRefGoogle Scholar
  18. Kiely CJ, Fink J, Brust M, Bethell D, Schiffrin DJ (1998) Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396:444–446. doi:10.1038/24808 CrossRefGoogle Scholar
  19. Kovtyukhova NI, Mallouk TE (2002) Nanowires as building blocks for self-assembling logic and memory circuits. Chem Eur J 8:4355–4363CrossRefGoogle Scholar
  20. Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang PD (2004) Nanoribbon waveguides for sub wavelength photonics integration. Science 305:1269–1273. doi:10.1126/science.1100999 PubMedCrossRefGoogle Scholar
  21. Lee K-H, Huang K-M, Tseng W-L, Chiu T-C, Lin Y-W, Chang H-T (2007) Manipulation of the growth of gold and silver nanomaterials on glass by seeding approach. Langmuir 23:1435–1442. doi:10.1021/la061880j PubMedCrossRefGoogle Scholar
  22. Lin S, Li M, Dujardin E, Girard C, Mann S (2005) One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv Mater 17:2553. doi:10.1002/adma.200500828 CrossRefGoogle Scholar
  23. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426. doi:10.1021/jp9917648 CrossRefGoogle Scholar
  24. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13:1501. doi:10.1002/1521–4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-ZCrossRefGoogle Scholar
  25. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232. doi:10.1038/nmat852 PubMedCrossRefADSGoogle Scholar
  26. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM et al (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115. doi:10.1126/science.1081940 PubMedCrossRefADSGoogle Scholar
  27. Millstone JE, Park S, Shuford KL, Qin LD, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313. doi:10.1021/ja043245a PubMedCrossRefGoogle Scholar
  28. Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214. doi:10.1002/adfm.200600066 CrossRefGoogle Scholar
  29. Mohamed MB, Wang ZL, El-Sayed MA (1999) Temperature-dependent size-controlled nucleation and growth of gold nanoclusters. J Phys Chem A 103:10255–10259. doi:10.1021/jp9919720 CrossRefGoogle Scholar
  30. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82. doi:10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#CrossRefGoogle Scholar
  31. Pei LH, Mori K, Adachi M (2004) Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 and the shape stabilization. Langmuir 20:7837–7843. doi:10.1021/la049262v PubMedCrossRefGoogle Scholar
  32. Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971. doi:10.1126/science.281.5379.969 PubMedCrossRefGoogle Scholar
  33. Pinta M (1978) Modern methods for trace element analysis. Ann Arbor Science Publishers, Ann ArborGoogle Scholar
  34. Rodrı’guez-Fernandez J, Perez-Juste J, Abajo FJGd, Liz-Marzan LM (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010. doi:10.1021/la060990n CrossRefGoogle Scholar
  35. Sun YG, Gates B, Mayers B, Xia YN (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168. doi:10.1021/nl010093y MATHCrossRefGoogle Scholar
  36. Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679. doi:10.1021/nl034140t CrossRefGoogle Scholar
  37. Tang ZY, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240. doi:10.1126/science.1072086 PubMedCrossRefADSGoogle Scholar
  38. Tao A, Sinsermsuksakul P, Yang PD (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45:4597–4601. doi:10.1002/anie.200601277 CrossRefGoogle Scholar
  39. Tsai MH, Chen SY, Shen P (2004) Imperfect oriented attachment: Accretion and defect generation of nanosize rutile condensates. Nano Lett 4:1197–1201. doi:10.1021/nl0495763 CrossRefGoogle Scholar
  40. Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452. doi:10.1021/jp003500n CrossRefGoogle Scholar
  41. Vasilev K, Zhu T, Wilms M, Gillies G, Lieberwirth I, Mittler S et al (2005) Simple, one-step synthesis of gold nanowires in aqueous solution. Langmuir 21:12399–12403. doi:10.1021/la052354f PubMedCrossRefGoogle Scholar
  42. Wall JF, Grieser F, Zukoski CF (1997) Monitoring chemical reactions at the gold/solution interface using atomic force microscopy. J Chem Soc Faraday Trans 93:4017–4020. doi:10.1039/a704398h CrossRefGoogle Scholar
  43. Wei QH, Su KH, Durant S, Zhang X (2004) Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4:1067–1071. doi:10.1021/nl049604h CrossRefGoogle Scholar
  44. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087 CrossRefGoogle Scholar
  45. Zhang H, Wang D (2008) Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion. Angew Chem Int Ed 47:3984–3987. doi:10.1002/anie.200705537 CrossRefGoogle Scholar
  46. Zhang JL, Du JM, Han BX, Liu ZM, Jiang T, Zhang ZF (2006) Sonochemical formation of single-crystalline gold nanobelts. Angew Chem Int Ed 45:1116–1119. doi:10.1002/anie.200503762 CrossRefGoogle Scholar
  47. Zou XQ, Ying EB, Dong SJ (2006) Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology 17:4758–4764. doi:10.1088/0957-4484/17/18/038 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of OklahomaNormanUSA

Personalised recommendations