Abstract
Fe clusters have been synthesised in ultra-high-vacuum chamber using a gas-stabilized cluster aggregation method that ensures good control of the cluster size and naturally oxidized in order to obtain Fe/Fe oxide core-shell nanoparticles. The morphology of an individual nanoparticle, as revealed by transmission electron microscopy, consists of a Fe core of an average diameter of 4.4 nm surrounded by an oxide shell of uniform thickness of about 1.2 nm in average. The nanoparticles may be assimilated with a ferro-/antiferromagnetic (FM/AF) system. The morpho-structural features have been correlated with magnetic measurements on the core-shell nanoparticles. A significant exchange bias effect has been measured, when the sample was field-cooled under an applied field of 3 T. As the morphology of core-shell nanoclusters is much more complicated than in FM/AF bilayers of regular thickness due to the particular geometry of the coronal AF layer, the shape and surface anisotropy have to be taken into account for a correct interpretation of the magnetic data.
Similar content being viewed by others
References
Ambrose T, Liu K, Chien CL (1999) Doubly exchange-biased NiCoO/NiFe/Cu/NiFe/NiCoO spin valves. J Appl Phys 85:6124–6126. doi:10.1063/1.370282
Andrä W, Nowak H (2006) (eds) Magnetism in medicine: a handbook. Wiley-VCH Interscience, New York
Berven CA, Wybourne MN, Longstreth L, Hutchison JE (2003) Nanoparticle based boolean logic. Physica E 19:246–250. doi:10.1016/S1386-9477(03)00324-2
Binns C, Baker SH, Louch S, Sirotti F, Cruguel H, Prieto P et al (2004) Building high-performance magnetic materials out of gas-phase nanoclusters. Appl Surf Sci 226:249–260. doi:10.1016/j.apsusc.2003.11.069
Bonetti E, del Bianco L, Signoretti S, Tiberto P (2001) Synthesis by ball milling and characterization of nanocrystalline Fe3O4 and Fe/Fe3O4 composite system. J Appl Phys 89:1806–1815. doi:10.1063/1.1339855
Chen M, Nikles DE (2002) Synthesis of spherical FePd and CoPt nanoparticles. J Appl Phys 91:8477–8479. doi:10.1063/1.1456406
Crisan O, Angelakeris M, Kehagias T, Simeonidis K, Giersig M, Flevaris NK (2006) Structure effects on the magnetism of AgCo nanoparticles. Acta Mater 54:5251–5260. doi:10.1016/j.actamat.2006.06.053
Crisan O, von Haeften K, Ellis AM, Binns C (2008) Novel gas-stabilised iron clusters: synthesis, structure and magnetic behaviour. Nanotechnology (to appear)
De Toro JA, Andres JP, Gonzalez JA, Muniz P, Munoz T, Normile PS et al (2006) Exchange bias and nanoparticle magnetic stability in Co-CoO composites. Phys Rev B 73:094449–094455. doi:10.1103/PhysRevB.73.094449
del Bianco L, Fiorani D, Testa AM, Bonetti E, Savini L, Signoretti S (2002) Magnetothermal behavior of a nanoscale Fe/Fe oxide granular system. Phys Rev B 66:174418–174429. doi:10.1103/PhysRevB.66.174418
del Bianco L, Fiorani D, Testa AM, Bonetti E, Signorini L (2004) Field-cooling dependence of exchange bias in a granular system of Fe nanoparticles embedded in an Fe oxide matrix. Phys Rev B 70:052401–052405. doi:10.1103/PhysRevB.70.052401
Dumitrache F, Morjan I, Alexandrescu R, Ciupina V, Prodan G, Voicu I et al (2005) Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Appl Surf Sci 247:25–31. doi:10.1016/j.apsusc.2005.01.037
Hilger I, Kiessling A, Romanus E, Hiergeist R, Hergt R, Andra W et al (2004) Magnetic nanoparticles for selective heating of magnetically labeled cells in culture: preliminary investigation. Nanotechnology 15:1027–1032. doi:10.1088/0957-4484/15/8/029
Martinez-Boubeta C, Simeonidis K, Angelakeris M, Pazos-Perez N, Giersig M, Delimitis A et al (2006) Critical radius for exchange bias in naturally oxidized Fe nanoparticles. Phys Rev B 74:054430–054440. doi:10.1103/PhysRevB.74.054430
Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102:1413–1414. doi:10.1103/PhysRev.102.1413
Miguel OB, Morales MP, Tartaj P, Ruiz-Cabello J, Bonville P, Santos M et al (2005) Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26:5695–5703. doi:10.1016/j.biomaterials.2005.02.020
Miguel OB, Tartaj P, Morales MP, Bonville P, Schindler UG, Zhao XQ et al (2006) Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis. Small 2:1476–1483. doi:10.1002/smll.200600209
Nogués J, Lederman D, Moran TJ, Schuller IK (1996) Positive exchange bias in FeF2-Fe bilayers. Phys Rev Lett 76:4624–4627. doi:10.1103/PhysRevLett.76.4624
Nogués J, Sort J, Langlais V, Doppiu S, Dieny B, Muñoz JS et al (2005) Exchange bias in ferromagnetic nanoparticles embedded in an antiferromagnetic matrix. Int J Nanotechnol 2:23–42
Peng DL, Sumiyama K, Konno TJ, Hihara T, Yamamuro S (1999) Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies. Phys Rev B 60:2093–2100. doi:10.1103/PhysRevB.60.2093
Peng DL, Sumiyama K, Hihara T, Yamamuro S, Konno TJ (2000) Magnetic properties of monodispersed Co/CoO clusters. Phys Rev B 61:3103–3109. doi:10.1103/PhysRevB.61.3103
Presting H, Konig U (2003) Future nanotechnology developments for automotive applications. Mater Sci Eng C 23:737–741. doi:10.1016/j.msec.2003.09.120
Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15:R841–R896. doi:10.1088/0953-8984/15/20/202
Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853. doi:10.1038/nature01687
Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. doi:10.1126/science.287.5460.1989
Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna C (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182. doi:10.1088/0022-3727/36/13/202
Teo BK, Zhang H (1991) Clusters of clusters: self-organization and self-similarity in the intermediate stages of cluster growth of Au-Ag supraclusters. Proc Natl Acad Sci USA 88:5067–5071. doi:10.1073/pnas.88.12.5067
Wang CM, Baer DR, Amonette JE, Engelhard MH, Qiang Y, Antony J (2007) Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation. Nanotechnology 18:255603–255610. doi:10.1088/0957-4484/18/25/255603
Zhang C, Wangler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H et al (2007) Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir 23:1427–1434. doi:10.1021/la061879k
Acknowledgements
Part of the work has been financially supported by the Romanian Ministry of Research under the research projects CEEX 20/2005 and PNCDI II 71-060/2007. This work was also supported by the EPSRC and EU project NANOSPIN.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Crisan, O., von Haeften, K., Ellis, A.M. et al. Structure and magnetic properties of Fe/Fe oxide clusters. J Nanopart Res 10 (Suppl 1), 193–199 (2008). https://doi.org/10.1007/s11051-008-9463-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11051-008-9463-3