Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 831–839 | Cite as

The effect of excess surfactants on the adsorption of iron oxide nanoparticles during a dip-coating process

  • Chang-Woo Kwon
  • Tae-Sik Yoon
  • Sung-Soo Yim
  • Sang-Hyun Park
  • Ki-Bum Kim
Research Paper

Abstract

The effect of excess surfactants (oleic acids) in a colloidal solution on the adsorption behavior of 9.5-nm-sized, sterically stabilized iron oxide (γ-Fe2O3) nanoparticles on hydrogen terminated Si (Si:H) substrates during a dip-coating process is examined. While the particle coverage follows a type of Langmuir adsorption isotherm as initially increasing and subsequently saturating with increasing particle concentration, it also critically depends on the excess surfactant concentration in the solution. For instance, it is noted that by adding the oleic acids from 0.06 to 2.80 × 1018 ml−1 in the solution with 4.65 × 1013 ml−1 particle concentration, the coverage is gradually reduced from 0.42 to 0.25. In addition, increasing surfactant concentration distinctly changes the morphology of a self-assembled particle layer from densely distributed smaller clusters to sparsely connected, larger ones with enlarged space. The reduced coverage and enlarged cluster size with increasing oleic acid concentration are explained by the reduced interaction energy between particle and substrate and the increased capillary force between particles.

Keywords

Colloidal nanoparticles Adsorption Surfactant Dip-coating Nanoparticle cluster 

References

  1. Chen S (2001) Langmuir-Blodgett fabrication of two-dimensional robust cross linked nanoparticle assemblies. Langmuir 17:2878–2884CrossRefGoogle Scholar
  2. Coe S, Woo W, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803. doi:10.1038/nature01217 PubMedCrossRefADSGoogle Scholar
  3. Cui Y, Bjork MT, Liddle JA, Sonnichsen C, Boussert B, Alivisatos AP (2004) Integration of colloidal nanocrystals into lithographycally patterned devices. Nano Lett 4:1093–1098. doi:10.1021/nl049488i CrossRefADSGoogle Scholar
  4. Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12:1303–1311. doi:10.1021/la9502251 CrossRefGoogle Scholar
  5. Feder J, Giaever I (1980) Adsorption of ferritin. J Colloid Interface Sci 78:144–154. doi:10.1016/0021-9797(80)90502-0 CrossRefGoogle Scholar
  6. Grabert H, Devoret MH (1992) Single charge tunneling: Coulomb blockade phenomena in nanostructures. Plenum, New YorkGoogle Scholar
  7. Guo Q, Teng X, Rahman S, Yang H (2003) Patterned Langmuir-Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J Am Chem Soc 125:630–631. doi:10.1021/ja0275764 PubMedCrossRefGoogle Scholar
  8. Holtz JH, Asheer SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832. doi:10.1038/39834 PubMedCrossRefADSGoogle Scholar
  9. Hong Y, Kim H, Lee G, Kim W, Park J, Chen J et al (2002) Controlled two-dimensional distribution of nanoparticles by spin-coating method. Appl Phys Lett 80:844–846. doi:10.1063/1.1445811 CrossRefADSGoogle Scholar
  10. Hussain Y, Krim J, Grant C (2005) OTS adsorption: a dynamic QCM study. Coll Surf A 262:81–86. doi:10.1016/j.colsurfa.2005.03.016 CrossRefGoogle Scholar
  11. Israelachvili J (1997) Intermolecular & surface forces. Academic Press, LondonGoogle Scholar
  12. Kim MH, Im SH, Park OO (2005) Rapid fabrication of two- and three- dimensional colloidal crystal films via confined convective assembly. Adv Funct Mater 15:1329–1335. doi:10.1002/adfm.200400602 CrossRefGoogle Scholar
  13. Kodama H, Momose S, Sugimoto T, Uzumaki T, Tanaka A (2005) Chemically synthesized FePt nanoparticle material for ultrahigh-density recording. IEEE Trans Magn 41:665–669. doi:10.1109/TMAG.2004.838050 CrossRefADSGoogle Scholar
  14. Kolliopoulou S, Dimitrakis P, Normand P, Zhang H, Cant N, Evans SD et al (2003) Hybrid silicon-organic nanoparticle memory device. J Appl Phys 94:5234–5239. doi:10.1063/1.1604962 CrossRefADSGoogle Scholar
  15. Kralchevsky PA, Nagayama K (1994) Capillary force between colloidal particles. Langmuir 10:23–36. doi:10.1021/la00013a004 CrossRefGoogle Scholar
  16. Kralchevsky PA, Paunov VN, Ivanov IB, Nagayama K (1992) Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface. J Colloid Interface Sci 151:79–94. doi:10.1016/0021-9797(92)90239-I CrossRefGoogle Scholar
  17. Linford M, Chidsey C (1993) Alkyl monolayers covalently bonded to silicon surface. J Am Chem Soc 115:12631–12632. doi:10.1021/ja00079a071 CrossRefGoogle Scholar
  18. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. John Wiley & Sons, New YorkGoogle Scholar
  19. Motte L, Lacaze E, Maillard M, Plieni MP (2000) Self-assemblies of silver sulfide nanocrystals on various substrates. Langmuir 16:3803–3812. doi:10.1021/la9908283 CrossRefGoogle Scholar
  20. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and charaterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610. doi:10.1146/annurev.matsci.30.1.545 CrossRefADSGoogle Scholar
  21. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. doi:10.1021/ja00072a025 CrossRefGoogle Scholar
  22. Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Develop 45:47–56CrossRefGoogle Scholar
  23. Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, San DiegoGoogle Scholar
  24. Oertel DC, Bawendi MG, Arange AC, Bulovic V (2005) Photodetectors based on treated CdSe quantum-dot films. Appl Phys Lett 87:213505. doi:10.1063/1.2136227 CrossRefADSGoogle Scholar
  25. Onoda GY, Linger EG (1986) Experimental determination of the random-parking limit in two dimensions. Phys Rev A 33:715–716. doi:10.1103/PhysRevA.33.715 PubMedCrossRefADSGoogle Scholar
  26. Park J, An K, Hwang Y, Park J, Noh H, Kim J et al (2004) Ultra-large scale synthesis of monodisperse nanocrystals. Nat Mater 3:891–895. doi:10.1038/nmat1251 PubMedCrossRefADSGoogle Scholar
  27. Prevo BG, Velev OD (2004) Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspension. Langmuir 20:2099–2107. doi:10.1021/la035295j PubMedCrossRefGoogle Scholar
  28. Stechel JS, Coe S, Bulovic V, Bawendi MG (2003) 1.3 μm to 1.55 μm tunable electrouminescence from PbSe quantum dots embedded within an organic device. Adv Mater 15:1862–1866. doi:10.1002/adma.200305449 CrossRefGoogle Scholar
  29. Sun S, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J Appl Phys 85:4325–4330. doi:10.1063/1.370357 CrossRefADSGoogle Scholar
  30. Sun S, Murray CB, Wellder D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. doi:10.1126/science.287.5460.1989 PubMedCrossRefADSGoogle Scholar
  31. Sun S, Anders S, Hamann H, Thiele J, Baglin J, Thomson T et al (2002) Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc 124:2884–2885. doi:10.1021/ja0176503 PubMedCrossRefGoogle Scholar
  32. Tilley RD, Saito S (2003) Preparation of large scale monolayers of gold nanoparticles on modified silicon substrates using a controlle pulling method. Langmuir 19:5115–5120. doi:10.1021/la026993r CrossRefGoogle Scholar
  33. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1544. doi:10.1021/cr9502357 PubMedCrossRefGoogle Scholar
  34. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670. doi:10.1038/nature04165 PubMedCrossRefADSGoogle Scholar
  35. Yoon TS, Oh J, Park SH, Kim V, Jung BG, Min SH et al (2004) Single and multiple-step dip-coating of colloidal maghemite (γ-Fe2O3) nanoparticles onto Si, Si3N4 and SiO2 substrates. Adv Funct Mater 14:1062–1068. doi:10.1002/adfm.200305088 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chang-Woo Kwon
    • 1
  • Tae-Sik Yoon
    • 2
  • Sung-Soo Yim
    • 1
  • Sang-Hyun Park
    • 1
  • Ki-Bum Kim
    • 1
  1. 1.Department of Materials Science and Engineering and Nano System Institute-National Core Research CenterSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Nano Science and EngineeringMyongji UniversityYonginSouth Korea

Personalised recommendations