Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 801–806 | Cite as

Multi-walled carbon nanotube-based transparent conductive layers deposited on polycarbonate substrate

  • M. R. S. Castro
  • N. Al-Dahoudi
  • P. W. Oliveira
  • H. K. Schmidt
Research Paper


We characterize 10-nm outer diameter multi-walled carbon nanotubes (powder and dispersion), which will be used for the preparation of conductive layers on polycarbonate (PC) substrates. The optical, electrical, and mechanical characterization of the spin-coated deposited layers is shown and compared with results obtained for layers deposited in borosilicate glass substrates. In both glass and plastic, the layers have shown transmittance higher than 78% in the visible range and have passed the tape and pencil standard tests for adherence and hardness, respectively. However, the sheet resistance presented by layers deposited on PC is still much superior to that of layers deposited on glass and sintered at higher temperatures. Nevertheless, the results obtained still allow the use of such layers in antistatic applications.


Carbon nanotubes Transparency Conductivity Coatings Antimony tin oxide Thin layer Nanocomposite 


  1. Al-Dahoudi N, Aegerter MA (2006) Comparative study of transparent conductive In2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films 502(1–2):193–197. doi:10.1016/j.tsf.2005.07.273 CrossRefADSGoogle Scholar
  2. ASTM—American Society for Testing and Materials (1985) Zeta potential of colloids in water and waste water. D 4187-82Google Scholar
  3. ASTM—American Society for Testing and Materials (1993) Standard test method for film hardness by pencil test. D 3363-92aGoogle Scholar
  4. Castro MRS (2008) Alternative conductive coatings based on multi-walled carbon nanotubes, Ph.D. Thesis, Shaker Publishing, Aachen, ISBN: 978-3-8322-7151-0Google Scholar
  5. Castro MRS, Schmidt HK (2007) Transparent conducting antimony-doped tin oxide films containing functionalized multi-walled carbon nanotubes. Phys Status Solidi A 204(10):3380–3386. doi:10.1002/pssa.200623157 CrossRefGoogle Scholar
  6. Castro MRS, Schmidt HK (2008) Preparation and characterization of low- and high-adherent transparent multi-walled carbon nanotube thin films. Mater Chem Phys 11(2–3):317–321. doi:10.1016/j.matchemphys.2008.04.019 CrossRefGoogle Scholar
  7. Castro MRS, Lasagni AF, Schmidt HK, Mücklich F (2008a) Direct laser interference patterning of multi-walled carbon nanotube-based transparent conductive coatings. Appl Surf Sci 254(18):5874–5878. doi:10.1016/j.apsusc.2008.03.140 CrossRefADSGoogle Scholar
  8. Castro MRS, Oliveira PW, Schmidt HK (2008b) Enhanced mechanical and electrical properties of antimony-doped tin oxide coatings. Semicond Sci Technol 23:035013 (5 pp). doi:10.1088/0268-1242/23/3/035013 Google Scholar
  9. Chappel S, Zaban A (2002) Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids. Sol Energy Mater Sol Cells 71(2):141–152. doi:10.1016/S0927-0248(01)00050-2 CrossRefGoogle Scholar
  10. de Andrade MJ, Lima MD, Skákalová V et al (2007) Electrical properties of transparent carbon nanotube networks prepared through different techniques. Phys Status Solidi (RRL) 1(5):178–180CrossRefGoogle Scholar
  11. DIN—Deutsches Institut für Normung (1995) Optical coatings—part 6: testing of the adhesion with a tape (tape test). 58196-K2Google Scholar
  12. Ferrer-Anglada N, Kaempgen M, Skákalová V et al (2004) Synthesis and characterization of carbon nanotube-conducting polymer thin films. Diam Relat Mater 13(2):256–260. doi:10.1016/j.diamond.2003.10.026 CrossRefGoogle Scholar
  13. Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16(35):3533–3540. doi:10.1039/b603821m CrossRefGoogle Scholar
  14. Hatton R, Day S, Chesters M, Willis M (2001) Organic electroluminescent devices: enhanced carrier injection using an organosilane self assembled monolayer (SAM) derivatized ITO electrode. Thin Solid Films 394(1–2):292–296. doi:10.1016/S0040-6090(01)01191-9 Google Scholar
  15. Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252(2):425–429. doi:10.1016/j.apsusc.2005.01.020 CrossRefADSGoogle Scholar
  16. Lee MJ, Judge CP, Wright SW (2000) Thin film transistors for display on plastic substrates. Solid-State Electron 44(8):1431–1434. doi:10.1016/S0038-1101(00)00067-8 CrossRefADSGoogle Scholar
  17. Lee JY, Kim JS, An KH et al (2005) Electrophoretic and dynamic light scattering in evaluating dispersion and size distribution of single-walled carbon nanotubes. J Nanosci Nanotechnol 5(7):1045–1049. doi:10.1166/jnn.2005.160 PubMedCrossRefGoogle Scholar
  18. Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25(8):22–28Google Scholar
  19. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44. doi:10.1088/0268-1242/20/4/004 CrossRefADSGoogle Scholar
  20. Swank TF (1995) Electrically conductive transparent doped tin oxide films. United States Patent 5626975Google Scholar
  21. Vincent P, Brioude A, Journet C et al (2002) Inclusion of carbon nanotubes in a TiO2 sol–gel matrix. J Non-Cryst Solids 311:130–137. doi:10.1016/S0022-3093(02)01371-6 CrossRefADSGoogle Scholar
  22. Wu Z, Chen Z, Du X, Logan JM et al (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276. doi:10.1126/science.1101243 PubMedCrossRefGoogle Scholar
  23. Yu X, Rajamani R, Stelson KA, Cui T (2006) Carbon nanotube based transparent conductive thin films. J Nanosci Nanotechnol 6(7):1939–1944. doi:10.1166/jnn.2006.332 PubMedCrossRefGoogle Scholar
  24. Zhu Y, Yi T, Zheng B, Cao L (1999) The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Appl Surf Sci 137(1–4):83–90. doi:10.1016/S0169-4332(98)00372-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. R. S. Castro
    • 1
  • N. Al-Dahoudi
    • 2
  • P. W. Oliveira
    • 1
  • H. K. Schmidt
    • 3
  1. 1.INM—Leibniz Institute for New Materials GmbHSaarbrückenGermany
  2. 2.Physics DepartmentAl Azhar UniversityGazaPalestine
  3. 3.EPG—Engineered nanoProducts Germany AGZweibrückenGermany

Personalised recommendations