Skip to main content

Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

Abstract

Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al (2006) The potential risks of nanomaterial: a review carried out for ECETOC. Part Fibre Toxicol 3:11–46. doi:10.1186/1743-8977-3-11

    PubMed  Article  CAS  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi:10.1007/s11051-005-4884-8

    Article  CAS  Google Scholar 

  • Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307. doi:10.1021/la050588t

    PubMed  Article  CAS  Google Scholar 

  • Buford M, Hamilton R, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6. doi:10.1186/1743-8977-4-6

    PubMed  Article  Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170. doi:10.1038/nbt1340

    PubMed  Article  CAS  Google Scholar 

  • Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475. doi:10.1021/jp971091y

    Article  CAS  Google Scholar 

  • Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:733–762

    Google Scholar 

  • Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM et al (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315. doi:10.1093/toxsci/kfm217

    PubMed  Article  CAS  Google Scholar 

  • Hogan CJ, Kettleson EM, Ramaswami B, Chen DR, Biswas P (2006) Charge reduced electrospray size spectrometry of mega- and gigadalton complexes: whole viruses and virus fragments. Anal Chem 78:844–852. doi:10.1021/ac051571i

    PubMed  Article  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi:10.1021/nl048715d

    Article  CAS  ADS  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science. Academic press Inc., London

    Google Scholar 

  • ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquids

  • Jiang J, Chen DR, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor (FLAR) with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603. doi:10.1088/0957-4484/18/28/285603

    Article  CAS  Google Scholar 

  • Jiang J, Oberdorster G, Elder E, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42. doi:10.1080/17435390701882478

    Article  CAS  Google Scholar 

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97. doi:10.1038/nbt920

    PubMed  Article  CAS  Google Scholar 

  • Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface 99:255–264. doi:10.1016/S0001-8686(02)00080-5

    Article  CAS  Google Scholar 

  • Kulkarni P, Sureshkumar R, Biswas P (2003) Multiscale simulation of irreversible deposition in presence of double layer interactions. J Colloid Interface Sci 260:36–48. doi:10.1016/S0021-9797(02)00236-9

    PubMed  Article  CAS  Google Scholar 

  • Lenggoro IW, Widiyandari H, Hogan CJ, Biswas P, Okuyama K (2007) Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Anal Chim Acta 585:193–201. doi:10.1016/j.aca.2006.12.030

    PubMed  Article  CAS  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641. doi:10.1080/10611860400015936

    PubMed  Article  CAS  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352. doi:10.1021/es060589n

    PubMed  Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125. doi:10.1021/nl060162e

    PubMed  Article  CAS  ADS  Google Scholar 

  • Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126. doi:10.1016/j.powtec.2005.08.020

    Article  CAS  Google Scholar 

  • Morrison ID, Ross S (2002) Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience, New York

    Google Scholar 

  • Muller F, Peukert W, Polke R, Stenger F (2004) Dispersing nanoparticles in liquids. Int J Miner Process 74:S31–S41. doi:10.1016/j.minpro.2004.07.023

    Article  CAS  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240

    PubMed  Article  CAS  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    PubMed  CAS  Google Scholar 

  • Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle-size, in-vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179. doi:10.2307/3432080

    PubMed  Article  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    PubMed  Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed  CAS  Article  Google Scholar 

  • Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25. doi:10.1080/17435390701314761

    Article  CAS  Google Scholar 

  • Ott LS, Finke RG (2007) Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord Chem Rev 251:1075–1100. doi:10.1016/j.ccr.2006.08.016

    Article  CAS  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303. doi:10.1093/toxsci/kfj099

    PubMed  Article  CAS  Google Scholar 

  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51. doi:10.1080/17435390701314902

    Article  CAS  Google Scholar 

  • Renwick LC, Donaldson K, Clouter A (2001) Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 172:119–127. doi:10.1006/taap.2001.9128

    PubMed  Article  CAS  Google Scholar 

  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129. doi:10.1080/17435390701381596

    Article  CAS  Google Scholar 

  • Saltiel C, Chen Q, Manickavasagam S, Schadler LS, Siegel RW, Menguc MP (2004) Identification of the dispersion behavior of surface treated nanoscale powders. J Nanopart Res 6:35–46. doi:10.1023/B:NANO.0000023206.45991.dc

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708. doi:10.1152/ajplung.00084.2005

    PubMed  Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley-Interscience, New York

    Google Scholar 

  • Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinis SE (2008) Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol 181:292–300. doi:10.1016/j.powtec.2007.05.016

    Article  CAS  Google Scholar 

  • The Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties

  • Tsantilis S, Pratsinis SE (2004) Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20:5933–5939. doi:10.1021/la036389w

    PubMed  Article  CAS  Google Scholar 

  • U.S. EPA (2004) Air quality criteria for particulate matter

  • Vasylkiv O, Sakka Y (2001) Synthesis and colloidal processing of zirconia nanopowder. J Am Ceram Soc 84:2489–2494

    CAS  Article  Google Scholar 

  • Verwey EJW, Overbeek JTg (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D’Ippoliti D et al (2005) Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 112:3073–3079. doi:10.1161/CIRCULATIONAHA.105.548743

    Article  CAS  Google Scholar 

  • Wallace WE, Keane MJ, Murray DK, Chisholm WP, Maynard AD, Ong TM (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 9:23–38. doi:10.1007/s11051-006-9159-5

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125. doi:10.1093/toxsci/kfg228

    PubMed  Article  CAS  Google Scholar 

  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104. doi:10.1016/j.tox.2006.11.002

    PubMed  Article  CAS  Google Scholar 

  • Wengeler R, Teleki A, Vetter M, Pratsinis SE, Nirschl H (2006) High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22:4928–4935. doi:10.1021/la053283n

    PubMed  Article  CAS  Google Scholar 

  • Widegren J, Bergstrom L (2002) Electrostatic stabilization of ultrafine titania in ethanol. J Am Ceram Soc 85:523–528

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the U.S. Department of Defense (AFOSR) MURI Grant, FA9550-04-1-0430. Support from the Center of Materials Innovation, Washington University in St. Louis, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Biswas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, J., Oberdörster, G. & Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11, 77–89 (2009). https://doi.org/10.1007/s11051-008-9446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9446-4

Keywords

  • Nanoparticle
  • Toxicology
  • Nanotoxicology
  • Health
  • Safety
  • Ultrasonication
  • Nanotechnology
  • Environment