Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 793–799 | Cite as

Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature

  • P. K. Khanna
  • Priyesh More
  • Jagdish Jawalkar
  • Yogesh Patil
  • N. Koteswar Rao
Research Paper

Abstract

Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been studied. It is observed that an ideal temperature ranges some where between 70 and 80 °C. Nearly phase-pure nanocopper can be obtained when both sodium succinate and polyvinyl alcohol (PVA) are used together to provide double capping in aqueous medium. It is observed that the surface plasmon resonance (SPR) phenomena is sensitive to experimental conditions and handling of the nanoparticles. X-ray diffraction measurements (XRD) revealed a broad pattern for the fcc crystal structure of copper metal. The particle diameter by use of Scherrer’s equation was calculated to be about 43 nm. Thermal analysis (TGA) revealed ~10–60% weight loss due to the presence of surfactants. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that there is clustering of spherical particles in dry state.

Keywords

Chemical synthesis Nanoparticles Metals XRD Aqueous medium 

References

  1. Arul Dhas N, Raj CP, Gedanken A (1998) Synthesis, characterization and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452CrossRefGoogle Scholar
  2. Chen S, Sommers JM (2001) Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 105:8816–8820CrossRefGoogle Scholar
  3. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M (2004) Antifungal activity of polymer-based copper nano-composite coatings. Appl Phys Lett 85:2417–2418CrossRefADSGoogle Scholar
  4. Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616PubMedCrossRefGoogle Scholar
  5. Condorelli GG, Costanzo LL, Fragala IL, Giuffrida S, Ventimiglia G (2003) A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. J Mater Chem 13:2409–2411CrossRefGoogle Scholar
  6. Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41(16):5208–5212Google Scholar
  7. Kang YS, Kim YH, Jo BG, Jeong JH (2006) Synthesis and characterization of Cu nano-particles prepared by thermal decomposition of Cu-Oleate complex. Int J Nanosci 5:339–344CrossRefGoogle Scholar
  8. Khanna PK, Gokhale R, Subbarao VVVS, Viswanath AK, Das BK, Satyanarayana CVV (2005a) PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater Chem Phys 92:229–233CrossRefGoogle Scholar
  9. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005b) Synthesis and characterization of Ag/PVA nanocompositeby chemical reduction method. Mater Chem Phys 93:117–121CrossRefGoogle Scholar
  10. Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R (2007a) Synthesis and characterization of copper nanoparticles. Mater Lett 61:4711–4714Google Scholar
  11. Khanna PK, Singh N, Kulkarni D, Deshmukh S, Charan S, Adhyapak PV (2007b) Water based simple synthesis of re-dispersible silver nano-particles. Mater Lett 61:3366–3370CrossRefGoogle Scholar
  12. Khanna PK, Kale TS, Shaikh M, Rao NK, Satyanarayana CVV (2008) Synthesis of oleic acid capped copper nanoparticles via reduction of copper salt by SFS. Mater Chem Phys (in press). doi:10.1016/j.matchemphys.2008.01.013
  13. Kogiso M, Yoshida K, Yase K, Shimizu T (2002) One-dimensional organization of copper nanoparticles by chemical reduction of lipid-copper hybrid nano-fibers. Chem Commun 2492–2493Google Scholar
  14. Lu DL, Tanaka K (1997) Au, Cu, Ag, Ni, and Pd particles grown in solution at different electrode potentials. J Phys Chem B 101:4030–4034CrossRefGoogle Scholar
  15. Ogawa T, Ootani M, Asai T, Hasegawa M, Ito O (1994) Effect of inorganic binders on the properties of thick film copper conductor. IEEE Trans Compon Packag Manuf Technol A 17(4):625–630CrossRefGoogle Scholar
  16. Pileni MP, Gulik-Lrzywicki T, Tanori J, Filankembo A, Dedieu JC (1998) Template design of microreactors with colloidal assemblies: control the growth of gopper metal rods. Langmuir 14:7359–7363CrossRefGoogle Scholar
  17. Reetz MT, Helbig WJ (1994) Size-selective synthesis of nano-structured transition metal clusters. Am Chem Soc 116:7401–7402CrossRefGoogle Scholar
  18. Wu C, Mosher BP, Zeng T (2005) Simple one-step synthesis of uniform disperse copper nanoparticles. Mater Res Soc Symp Proc 879E:Z6.3.1–Z6.3.6Google Scholar
  19. Yang JG, Zhou YL, Okamoto T, Bessho T, Satake S, Ichino R, Okido M (2006a) Preparation of oleic acid-capped copper nanoparticles. Chem Lett 35:1190–1192Google Scholar
  20. Yang JG, Okamoto T, Ichino R, Bessho T, Satake S, Okido M (2006b) A simple way for preparing antioxidation nano-copper powders. Chem Lett 35:648–649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. K. Khanna
    • 1
  • Priyesh More
    • 1
  • Jagdish Jawalkar
    • 1
  • Yogesh Patil
    • 1
  • N. Koteswar Rao
    • 1
  1. 1.Nanoscience LaboratroyCentre for Materials for Electronics Technology (C-MET)PanchawatiIndia

Personalised recommendations