Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 821–829 | Cite as

Avidin conjugation to up-conversion phosphor NaYF4:Yb3+, Er3+ by the oxidation of the oligosaccharide chains

  • Deyan Kong
  • Zewei Quan
  • Jun Yang
  • Piaoping Yang
  • Chunxia Li
  • Jun Lin
Research Paper

Abstract

NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.

Keywords

Up-conversion phosphor Avidin Oligosaccharide chains Fluorescence probe Nanoparticles Biomolecules 

References

  1. Bayer EA, Wilchek M (1980) The use of avidin-biotin complex as a tool in molecular biology. Methods Biochem Anal 26:1–45PubMedCrossRefGoogle Scholar
  2. Bellamy LJ (1975) The infra-red spectra of complex molecules. Chapman and Hall Ltd, LondonGoogle Scholar
  3. Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17:687–692CrossRefADSGoogle Scholar
  4. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128:7444–7445PubMedCrossRefGoogle Scholar
  5. Buining PA, Humbel BM, Philipse AP, Verkleij AJ (1997) Preparation of functional silane-stabilized gold colloids in the (sub)nanometer size range. Langmuir 13:3921–3926CrossRefGoogle Scholar
  6. Deschamps A, Lagier JP, Fievet F, Aeiyach S, Lacaze PC (1992) New chemical one-step process for preparing fine metallic particles embedded in a polymer matrix. J Mater Chem 2:1213–1214CrossRefGoogle Scholar
  7. Eiden-Assmann S, Maret G (2004) CeF3 nanoparticles: synthesis and characterization. Mater Res Bull 39:21–24CrossRefGoogle Scholar
  8. Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13:101–107CrossRefGoogle Scholar
  9. Feldmann C (2005) Polyol-mediated synthesis of nanoscale functional materials. Solid State Sci 7:868–873CrossRefGoogle Scholar
  10. Feldmann C, Jungk HO (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed 40:359–362CrossRefGoogle Scholar
  11. Feng J, Shan GM, Maquieira A, Koivunen EM, Guo B, Hammock DB, Kennedy IM (2003) Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal Chem 75:5282–5286CrossRefGoogle Scholar
  12. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  13. Goldman RE, Anderson PG, Tran TP, Mattoussi H, Charles TP, Mauro JM (2002a) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74:841–847PubMedCrossRefGoogle Scholar
  14. Goldman RE, Balighian DE, Mattoussi H, Kuno MK, Mauro JM, Tran TP, Anderson PG (2002b) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378–6382PubMedCrossRefGoogle Scholar
  15. Heer S, Lehmann O, Hasse M, Güdel HU (2004) Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed 42:3179–3182CrossRefGoogle Scholar
  16. Hirai T, Orikoshi T, Komasawa I (2002) Preparation of Y2O3:Yb, Er infrared-to-visible conversion phosphor fine particles using an emulsion liquid membrane system. Chem Mater 14:3576–3583CrossRefGoogle Scholar
  17. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108CrossRefGoogle Scholar
  18. Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14:1336–1341CrossRefGoogle Scholar
  19. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128:6426–6436PubMedCrossRefGoogle Scholar
  20. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612PubMedCrossRefGoogle Scholar
  21. Meiser F, Cortez C, Caruso F (2004) Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticle. Angew Chem Int Ed 43:5954–5957CrossRefGoogle Scholar
  22. Niedbala RS, Feindt H, Kardos K, Vail T, Burton J, Bielska B, Li S, Milunic D, Bourdelle P, Vallejo R (2001) Detection of analytes by immunoassay using up-converting phosphor technology. Anal Biochem 293:22–30PubMedCrossRefGoogle Scholar
  23. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  24. Ohmori M, Matijevié E (1992) Preparation and properties of uniform coated colloidal particles. J Colloid Interface Sci 150:594–598CrossRefGoogle Scholar
  25. Ohmori M, Matijevié E (1993) Preparation and properties of uniform coated inorganic colloidal particles. J Colloid Interface Sci 160:288–292CrossRefGoogle Scholar
  26. O’Shannessy DJ, Hoffman WL (1987) Site-directed immobilization of glycoproteins on hydrazide-containing solid supports. Biotechnol Appl Biochem 9:488–496PubMedGoogle Scholar
  27. O’Shannessy DJ, Wilchek M (1990) Immobilization of glycoconjugates by their oligosaccharides: use of hydrazido-derivatized matrices. Anal Biochem 191:1–8PubMedCrossRefGoogle Scholar
  28. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New York and LondonGoogle Scholar
  29. Rao SV, Anderson KW, Bachas LG (1998) Oriented immobilization of proteins. Mikrochim Acta 128:127–143. doi:10.1007/BF01243043 Google Scholar
  30. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  31. Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862PubMedCrossRefGoogle Scholar
  32. Suyver JF, Grimm J, van Veen MK, Biner D, Krämer KW, Güdel HU (2006) Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J Lumin 117:1–12CrossRefGoogle Scholar
  33. Toneguzzo P, Acher O, Viau G, Pierrard A, Fievet-Vincent F, Fievet F, Rosenman I (1999) Static and dynamic magnetic properties of fine CoNi and FeCoNi particles synthesized by the polyol process. IEEE Trans Magn 35:3469–3471CrossRefGoogle Scholar
  34. Wang LY, Li YD (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19:727–734CrossRefGoogle Scholar
  35. Wang F, Tan WB, Zhang Y, Fan XP, Wang MQ (2006a) Luminescent nanomaterials for biological labeling. Nanotechnology 17:R1–R13CrossRefADSGoogle Scholar
  36. Wang LY, Yan RX, Huo ZY, Wang L, Zeng JH, Bao J, Wang X, Peng Q, Li YD (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057CrossRefGoogle Scholar
  37. Wang F, Zhang Y, Fan XP, Wang MQ (2006b) One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications. Nanotechnology 17:1527–1532MATHCrossRefADSGoogle Scholar
  38. Yi GS, Lu HC, Zhao SY, Ge Y, Yang WJ, Chen DP et al (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4:2191–2196. doi:10.1021/nl048680h CrossRefGoogle Scholar
  39. Zijlmans HJMAA, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, et al (1999) Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 267:30–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Deyan Kong
    • 1
    • 2
  • Zewei Quan
    • 1
  • Jun Yang
    • 1
  • Piaoping Yang
    • 1
  • Chunxia Li
    • 1
  • Jun Lin
    • 1
  1. 1.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations