Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 785–792 | Cite as

Calculation of curvature dependent surface plasmon resonance in gold nanospheroid and nanoshell

Research Paper

Abstract

In this paper, theoretical calculations based on dipole-limit are performed to investigate the effects of curvature on the surface plasmon resonance (SPR) properties of nanometer size gold spheroid and shell. By comparing the aspect ratio with the shell thickness, we demonstrated that the curvature radius is a common better factor that can be used to predict the SPR wavelength and shift fashion. For nanospheroid, increasing the ratio of curvature radius corresponding to the climaxes leads to an increase in the ratio of SPR wavelength, whereas increasing the ratio of curvature radius of outer and inner surface in nanoshell leads to an decrease in the ratio of SPR wavelength. As a morphologic factor, curvature radius plays an important role in affecting the distribution of electron density, and consequently controlling the SPR frequency.

Keywords

Curvature Gold nanospheroid Gold nanoshell Surface plasmon resonance (SPR) Quasi-static Theory Simulation 

References

  1. Antoine R, Pellarin M, Palpant B, Broyer M, Prevel B, Galletto P et al (1998) Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix. J Appl Phys 84(8):4532–4536. doi:10.1063/1.368679 CrossRefADSGoogle Scholar
  2. Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78(22):4217–4220. doi:10.1103/PhysRevLett.78.4217 CrossRefADSGoogle Scholar
  3. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832. doi:10.1364/JOSAB.16.001824 CrossRefADSGoogle Scholar
  4. Bohren CF (1983) Absorption and scattering of light by small particles. A Wiley Interscience Publication, New YorkGoogle Scholar
  5. Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109(27):13138–13142. doi:10.1021/jp0507288 PubMedCrossRefGoogle Scholar
  6. Chatterjee K, Banerjee S, Chakravorty D (2002) Plasmon resonance shifts in oxide-coated silver nanoparticles. Phys Rev B 66(8):085421. doi:10.1103/PhysRevB.66.085421 CrossRefADSGoogle Scholar
  7. Eustis S, El-Sayed MA (2005) Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. J Phys Chem B 109(34):16350–16356. doi:10.1021/jp052951a PubMedCrossRefGoogle Scholar
  8. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New YorkGoogle Scholar
  9. Lee KS, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109(43):20331–20338. doi:10.1021/jp054385p PubMedCrossRefGoogle Scholar
  10. Link S, El-Sayed MA (1999) Size and temperature depen-dence of the plasmon absorption of colloidal gold nano-particles. J Phys Chem B 103(21):4212–4217. doi:10.1021/jp984796o CrossRefGoogle Scholar
  11. Link S, Mohamed M, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103(16):3073–3077. doi:10.1021/jp990183f CrossRefGoogle Scholar
  12. Mock JJ, Oldenburg SJ, Smith DR, Schultz DA, Schultz S (2002) Omposite plasmon resonant nanowires. Nano Lett 2(5):465–469. doi:10.1021/nl0255247 CrossRefGoogle Scholar
  13. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317(6):517–523. doi:10.1016/S0009-2614(99)01414-1 CrossRefGoogle Scholar
  14. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Scattering spectra of single gold nanoshells. Nano Lett 4(12):2355–2359. doi:10.1021/nl048610a CrossRefGoogle Scholar
  15. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78(2):173–292. doi:10.1016/0370-1573(81)90194-0 CrossRefADSGoogle Scholar
  16. Prescott SW, Mulvaneya P (2006) Gold nanorod extinction spectra. J Appl Phys 99(12):123504. doi:10.1063/1.2203212 CrossRefADSGoogle Scholar
  17. Prodan E, Nordlander P, Halas NJ (2003a) Effects of dielectric screening on the optical properties of metallic nanoshells. Chem Phys Lett 368(1–2):94–101. doi:10.1016/S0009-2614(02)01828-6 CrossRefADSGoogle Scholar
  18. Prodan E, Radlo C, Halas NJ, Nordlander P (2003b) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422. doi:10.1126/science.1089171 PubMedCrossRefADSGoogle Scholar
  19. Qu XH, Peng ZQ, Jiang X, Dong SJ (2004) Surface charge influence on the surface plasmon absorbance of electroactive thiol-protected gold nanoparticles. Langmuir 20(7):2519–2522. doi:10.1021/la035558± PubMedCrossRefGoogle Scholar
  20. Schroter U, Dereux A (2001) Surface plasmon polaritons on metal cylinders with dielectric core. Phys Rev B 64(12):125420. doi:10.1103/PhysRevB.64.125420 CrossRefADSGoogle Scholar
  21. Van der zande BMI, Bohmer MR, Fokkink LGJ, Schonenberger C (2000) Colloidal dispersion of gold rods: synthesis and optical properties. Langmuir 16(2):451–458CrossRefGoogle Scholar
  22. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold Nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664. doi:10.1021/jp971656q CrossRefGoogle Scholar
  23. Zhou HS, Honma I, Komiyama H, Haus JW (1994) Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B 50(16):12052–12056. doi:10.1103/PhysRevB.50.12052 CrossRefADSGoogle Scholar
  24. Zhu J (2005) Shape dependent full width at half maximum of the absorption band in gold nanorods. Phys Lett A 339(6):466–471. doi:10.1016/j.physleta.2005.03.065 CrossRefADSGoogle Scholar
  25. Zhu J (2007) Ellipsoidal core-shell dielectric-gold nanostructure: theoretical study of the tunable surface plasmon resonance. J Nanosci Nanotechnol 7(3):1059–1064. doi:10.1166/jnn.2007.401 PubMedCrossRefGoogle Scholar
  26. Zhu J, Liu X (2006) Simulation of the surrounding medium controlled local field enhancement for silver nanorods. Chem Phys 323(2–3):446–450. doi:10.1016/j.chemphys.2005.10.005 CrossRefADSMathSciNetGoogle Scholar
  27. Zhu J, Wang YC, Huang LQ, Lu YM (2004a) Resonance light scattering characters of core-shell structure Au–Ag nanoparticles. Phys Lett A 323(5–6):455–459. doi:10.1016/j.physleta.2004.02.038 MATHCrossRefADSGoogle Scholar
  28. Zhu J, Wang YC, Lu YM (2004b) Fluorescence spectra characters of silver-coated gold colloidal nanoshells. Colloid Surf A 232(2–3):155–161. doi:10.1016/j.colsurfa.2003.10.017 Google Scholar
  29. Zhu J, Zhao JW, Wang YC (2004c) Influence of surface charge density on the plasmon resonance modes in gold nanoellipsoid. Physica B (Amsterdam) 353(3–4):331–335. doi:10.1016/j.physb.2004.10.015 Google Scholar
  30. Zhu J, Li JJ, Zhao JW, Bai SW (2008) Light absorption efficiencies of gold nanoellipsoid at different resonance frequency. J Mater Sci. doi: 10.1007/s10853-008-2751-6

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Modern Physics, School of ScienceXi’an Jiaotong UniversityXi’anPeoples Republic of China

Personalised recommendations