Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 691–699 | Cite as

In situ processing and properties of nanostructured hydroxyapatite/alginate composite

Research Paper

Abstract

A series of hydroxyapatite/alginate (HA/Alg) nanocomposites with alginate amounts varying from 10 to 40 wt% were prepared through in situ hybridization technique. The inorganic phase in the composites was carbonate-substituted HA with low crystallinity. The crystallinity of HA decreased with the increase of alginate content. HA crystallites were needle-like in shape with a typical size of 20 to 50 nm in length and 5 nm in width. FT-IR spectroscopy indicated that the chemical interaction occurred between the mineral phase and the polymer matrix. As compared to pure HA without alginate, the composites showed more homogeneous microstructures, where HA nanocrystals were well embedded in alginate matrix. Among all the samples, the composite containing 30 wt% alginate exhibited a highly ordered three-dimensional network, similar to natural bone’s microstructure.

Keywords

Hydroxyapatite Alginate Nanocomposite In situ hybridization Microstructure Nanocrystals Nanomaterials 

References

  1. Bigi A, Panzavolta S, Roveri N (1998) Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials 19:739–744PubMedCrossRefGoogle Scholar
  2. Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K (2002) Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J Biomed Mater Res 59:709–715PubMedCrossRefGoogle Scholar
  3. Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862PubMedCrossRefGoogle Scholar
  4. Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, De Groot K (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50:518–527PubMedCrossRefGoogle Scholar
  5. Dujardin E, Mann S (2002) Bio-inspired materials chemistry. Adv Mater 14:775–788CrossRefGoogle Scholar
  6. Furuzono T, Taguchi T, Kishida A, Akashi M, Tamada Y (2000) Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J Biomed Mater Res 50:344–352PubMedCrossRefGoogle Scholar
  7. Gibson IR, Bonfield W (2002) Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res 59:697–708PubMedCrossRefGoogle Scholar
  8. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711PubMedCrossRefGoogle Scholar
  9. Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res 75A:275–282CrossRefGoogle Scholar
  10. Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res 71B:52–65CrossRefGoogle Scholar
  11. Liou SC, Chen SY, Liu DM (2005) Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J Biomed Mater Res 73B:117–122CrossRefGoogle Scholar
  12. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318CrossRefADSGoogle Scholar
  13. Maruyama M, Terayama K, Ito M, Takei T, Kitagawa E (1995) Hydroxyapatite clay for gap filling and adequate bone ingrowth. J Biomed Mater Res 29:329–336PubMedCrossRefGoogle Scholar
  14. Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835PubMedCrossRefGoogle Scholar
  15. Rhee SH, Tanaka J (2002) Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate. J Mater Sci Mater Med 13:597–600PubMedCrossRefGoogle Scholar
  16. Ribeiro CC, Barrias CC, Barbosa MA (2004) Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25:4363–4373PubMedCrossRefGoogle Scholar
  17. Sailaja GS, Velayudhan S, Sunny MC, Sreenivasan K, Varma HK, Ramesh P (2003) Hydroxyapatite filled chitosan-polyacrylic acid polyelectrolyte complexes. J Mater Sci 38:3653–3662CrossRefGoogle Scholar
  18. Sivakumar M, Rao KP (2003) Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres. J Biomed Mater Res 65A:222–228CrossRefGoogle Scholar
  19. Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J (2004) Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng C24:341–347Google Scholar
  20. Stupp SI, Braun PV (1997) Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science 277:1242–1248PubMedCrossRefGoogle Scholar
  21. Tampieri A, Celotti G, Landi E (2005) From biomimetic apatites to biologically inspired composites. Anal Bioanal Chem 381:568–576PubMedCrossRefGoogle Scholar
  22. Teng S, Shi J, Peng B, Chen L (2006) The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos Sci Technol 66:1532–1538CrossRefGoogle Scholar
  23. Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151PubMedCrossRefGoogle Scholar
  24. Wang L, Nemoto R, Senna M (2002) Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. J Nanopart Res 4:535–540CrossRefGoogle Scholar
  25. Wang L, Nemoto R, Senna M (2004) Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content. J Eur Ceram Soc 24:2707–2715CrossRefGoogle Scholar
  26. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27PubMedCrossRefGoogle Scholar
  27. Zhang SM, Cui FZ, Liao SS, Zhu Y, Han L (2003a) Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med 14:641–645PubMedCrossRefGoogle Scholar
  28. Zhang W, Liao SS, Cui FZ (2003b) Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater 15:3221–3226CrossRefGoogle Scholar
  29. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23:3227–3234PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.China National Academy of Nanotechnology & EngineeringTianjinChina
  2. 2.Department of Chemical Machinery, School of Chemical EngineeringDalian University of TechnologyDalainChina
  3. 3.Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina

Personalised recommendations