Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 707–712 | Cite as

Preparation of Pt–CeO2/MWNT nano-composites by reverse micellar method for methanol oxidation

Research Paper


We report the preparation of Pt–CeO2 nanoparticles on the multi-walled carbon nanotubes (MWNTs) by a reverse micellar method. Transmission electron microscopy (TEM) analysis indicated that well-dispersed small Pt–CeO2 nanoparticles were formed on the MWCNTs. X-ray diffraction (XRD) analysis confirmed the formation of the Pt–CeO2 nanoparticles on the MWNTs. Cyclic voltammetry (CV) results demonstrated that the Pt–CeO2/MWNT exhibited a higher methanol oxidation than did the Pt/MWNT catalyst. The CO stripping test showed that CeO2 can make CO stripped at a lower potential, which is helpful for CO and methanol electro-oxidation.


Pt–CeO2/MWNTs Methanol electro-oxidation Direct methanol fuel cells Synthesis Nanomaterials 


  1. Agnelli M, Swaan HM, Marquez-Alvarez C, Martin GA, Mirodatos C (1998) CO hydrogenation on a nickel catalyst – II. A mechanistic study by transient kinetics and infrared spectroscopy. J Catal 175:117–128CrossRefGoogle Scholar
  2. Bai YX, Wu JJ, Xi JY, Wang JS, Zhu WT, Chen LQ, Qiu X (2005) Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem Commun 7:1087–1090CrossRefGoogle Scholar
  3. Balakos MW, Chuang SSC, Srinivas G (1993) Transient infrared study of methanation and ethylene hydroformylation over Rh/SiO2 catalysts. J Catal 140:281–285CrossRefGoogle Scholar
  4. Baxter SF, Battaglia VS, White RE (1999) Methanol fuel cell model: anode. J Electrochem Soc 146:437–447CrossRefGoogle Scholar
  5. Bunluesin T, Gorte RJ, Graham GW (1997) CO oxidation for the characterization of reducibility in oxygen storage components of three-way automotive catalysts. Appl Catal B Environ 14:105–115CrossRefGoogle Scholar
  6. Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B Environ 15:107–114CrossRefGoogle Scholar
  7. Chen PL, Chen IW (1996) Grain growth in CeO2: dopant effects, defect mechanism, and solute drag. J Am Ceram Soc 79:1793–1800CrossRefGoogle Scholar
  8. Chen PL, Chen IW (1997) Sintering of fine oxide powders – sintering mechanisms. J Am Ceram Soc 80:637–645Google Scholar
  9. Chen L, Lu GX (2008) Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanol electro-oxidation. Electrochim Acta 53:4316–4323CrossRefGoogle Scholar
  10. Chen WX, Zhao J, Lee JY, Liu ZL (2005) Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Mater Chem Phys 91:124–129CrossRefGoogle Scholar
  11. Cordatos H, Bunluesin T, Stubenrauch J, Vohs JM, Gorte RJ (1996) Effect of ceria structure on oxygen migration for Rh/ceria catalysts. J Phys Chem 100:785–789CrossRefGoogle Scholar
  12. Czerwinski F, Szpunar JA (1997) The nanocrystalline ceria sol-gel coatings for high temperature applications. J Sol-Gel Sci Technol 9:103–114Google Scholar
  13. Efstathiou AM, Chafik T, Bianchi D, Bennett CO (1994) A transient kinetic study of the Co/H2 reaction on Rh/Al2O3 using FTIR and mass spectroscopy. J Catal 148:224–239CrossRefGoogle Scholar
  14. Guillou N, Nistor LC, Fuess H, Hahn H (1997) Microstructural studies of nanocrystalline CeO2 produced by gas condensation. Nanostruct Mater 8:545–557CrossRefGoogle Scholar
  15. Hirano M, Kato E (1996) Hydrothermal synthesis of Cerium(IV) oxide. J Am Ceram Soc 79:777–780CrossRefGoogle Scholar
  16. Kelley SC, Deluga GA, Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem Solid-State Lett 3:407–409CrossRefGoogle Scholar
  17. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296CrossRefGoogle Scholar
  18. Li Y, Qi F, Maria F-S (2000) Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B Environ 27:179–191CrossRefGoogle Scholar
  19. Li QF, Hjuler HA, Hasiotis C, Kallitsis JK, Kontoyannis CG, Bjerrum NJ (2002) A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes. Electrochem Solid-State Lett 5:A125–A128CrossRefGoogle Scholar
  20. Liao XH, Zhu JM, Zhu JJ, Xu JZ, Chen HY (2001) Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation. Chem Commun 10:937–938CrossRefGoogle Scholar
  21. Luengnaruemitchai A, Osuwan S, Gulari E (2004) Selective catalytic oxidation of CO in the presence of H2 over gold catalyst. Int J Hydrogen Energy 29:429–435CrossRefGoogle Scholar
  22. McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol-air fuel cells for road transportation. J Power Sources 83:15–31CrossRefGoogle Scholar
  23. Nwalor JU, Goodwin JG, Biloen P (1989) Steady-state isotopic transient-kinetic analysis of iron-catalyzed ammonia synthesis. J Catal 117:121–134CrossRefGoogle Scholar
  24. Oh SH (1990) Effects of cerium addition on the CO-NO reaction kinetics over alumina-supported rhodium catalysts. J Catal 124:477–487CrossRefGoogle Scholar
  25. Park KW, Sung YE, Toney MF (2006) Structural effect of PtRu–WO3 alloy nanostructures on methanol electrooxidation. Electrochem Commun 8:359–363CrossRefGoogle Scholar
  26. Peil KP, Goodwin JG Jr, Marcelin G (1989) An examination of the oxygen pathway during methane oxidation over a Li/MgO catalyst. J Phys Chem 93:5977–5979CrossRefGoogle Scholar
  27. Rajesh B, Karthik V, Karthikeyan S, Ravindranathan Thampi K, Bonard JM, Viswanathan B (2002) Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells. Fuel 81:2177–2190CrossRefGoogle Scholar
  28. Saha MS, Li RY, Sun XL (2008) High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells. J Power Sources 177:314–322CrossRefGoogle Scholar
  29. Schuurman Y, Mirodatos C (1997) Uses of transient kinetics for methane activation studies. Appl Catal A Gen 151:305–331CrossRefGoogle Scholar
  30. Scott K, Taama WM, Argyropoulos P, Sundmacher K (1999) The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources 83:204–216CrossRefGoogle Scholar
  31. Shao YY, Yin GP, Wang JJ, Gao YZ, Shi PF (2006) Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. J Power Sources 161:47–53CrossRefGoogle Scholar
  32. Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ (2001) Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J Power Sources 102:172–177CrossRefGoogle Scholar
  33. Stockwell DM, Chung JS, Bennett CO (1988) A transient infrared and isotopic study of methanation over Ni/Al2O3. J Catal 112:135–144CrossRefGoogle Scholar
  34. Summers JC, Ausen SA (1979) Interaction of cerium oxide with noble metals. J Catal 58:131–143CrossRefGoogle Scholar
  35. Wang ZL, Feng XD (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107:13563–13566CrossRefGoogle Scholar
  36. Xiong L, Manthiram A (2004) Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim Acta 49:4163–4170CrossRefGoogle Scholar
  37. Zhang F, Jin Q, Chan SW (2004) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95:4319–4326CrossRefADSGoogle Scholar
  38. Zhitomirsky I, Petric A (2001) Electrochemical deposition of ceria and doped ceria films. Ceram Int 27:149–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Chemistry ScienceQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.Qufu Normal SchoolQufuPeople’s Republic of China

Personalised recommendations