Skip to main content

Advertisement

Log in

Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we demonstrated the potential use of nucleic acid ligand (aptamers) conjugated gold nanoparticles (AuNPs) for cancer cell detection. Through specific binding of the aptamers toward platelet-derived growth factor (PDGF), MDA-MB-231 and Hs578T cells (cancer cells) that over-express PDGF, interact with Apt-AuNPs to a greater extent than do H184B5F5/M10 cells (normal cells). These results were confirmed through inductively coupled plasma mass spectrometry measurements of the gold ion concentrations within these cells. Aggregation of the Apt-AuNPs in the cytoplasm of the cancer cells led to the generation of an intense scattered light upon photo-illumination; this phenomenon allows the differentiation of cancer cells from normal cells using a dark field optical microscope. The presence of Apt-AuNPs suppressed the proliferation of MDA-MB-231 cancer cells, but not H184B5F5/M10 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya R et al (2004) Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett 4(12):2479–2481

    Article  CAS  ADS  Google Scholar 

  • Bronzert DA et al (1987) Synthesis and secretion of platelet-derived growth-factor by human-breast cancer cell-lines. Proc Natl Acad Sci USA 84(16):5763–5767

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  PubMed  CAS  ADS  Google Scholar 

  • Chen J et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477

    Article  PubMed  CAS  ADS  Google Scholar 

  • Coltrera MD, Wang J, Porter PL, Gown AM (1995) Expression of platelet-derived growth-factor B-chain and the platelet-derived growth-factor receptor-beta subunit in human breast-tissue and breast-carcinoma. Cancer Res 55(12):2703–2708

    PubMed  CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente JM, Berry CC, Riehle MO, Curtis ASG (2006) Nanoparticle targeting at cells. Langmuir 22(7):3286–3293

    Article  CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834

    Article  PubMed  CAS  ADS  Google Scholar 

  • Farokhzad OC et al (2004) Nanopartide-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103(16):6315–6320

    Article  PubMed  ADS  CAS  Google Scholar 

  • Floege J et al (1999) Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor inGlomerulonephritis by aptamers. Am J Pathol 154(1):169–179

    PubMed  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22

    ADS  CAS  Google Scholar 

  • Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17(1):1–28

    Article  CAS  Google Scholar 

  • Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  • Green LS et al (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424

    Article  PubMed  CAS  Google Scholar 

  • Green R, Ellington AD, Szostak JW (1990) In vitro genetic-analysis of the tetrahymena self-splicing intron. Nature 347(6291):406–408

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hamula CLA, Guthrie JW, Zhang H, Li X-F, Le XC (2006) Selection and analytical applications of aptamers. Trac-Trends Anal Chem 25(7):681–691

    Article  CAS  Google Scholar 

  • Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316

    PubMed  CAS  Google Scholar 

  • Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924

    Article  PubMed  CAS  Google Scholar 

  • Horisberger M (1981) Colloidal gold—a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron-microscopy. Scan Electron Micros II:9–32

    Google Scholar 

  • Hu M et al (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1094

    Article  PubMed  CAS  Google Scholar 

  • Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741

    Article  PubMed  CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2005) Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 4(4):407–416

    PubMed  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Article  CAS  Google Scholar 

  • Leitzel K et al (1991) Elevated plasma platelet-derived growth-factor-B-chain levels in cancer-patients. Cancer Res 51(16):4149–4154

    PubMed  CAS  Google Scholar 

  • Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 58(1):3–7

    Article  PubMed  CAS  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  PubMed  CAS  ADS  Google Scholar 

  • Peres R, Betsholtz C, Westermark B, Heldin C-H (1987) Frequent expression of growth-factors for mesenchymal cells in human mammary-carcinoma cell-lines. Cancer Res 47(13):3425–3429

    PubMed  CAS  Google Scholar 

  • Pernodet N et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773

    Article  PubMed  CAS  Google Scholar 

  • Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24(2):62–67

    Article  PubMed  CAS  Google Scholar 

  • Proske D, Blank M, Buhmann R, Resch A (2005) Aptamers—basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 69(4):367–374

    Article  PubMed  CAS  Google Scholar 

  • Sokolov K et al (2003a) Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat 2(6):491–504

    PubMed  CAS  Google Scholar 

  • Sokolov K et al (2003b) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004

    PubMed  CAS  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Article  CAS  Google Scholar 

  • Thomas M, Klibanov AM (2003) Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 100(16):9138–9143

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tkachenko AG et al (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125(16):4700–4701

    Article  PubMed  CAS  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434

    Article  PubMed  CAS  Google Scholar 

  • Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of AU(55) clusters. Small 1(8–9):841–844

    Article  PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment—rna ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391

    Article  ADS  PubMed  Google Scholar 

  • Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory Anal Biochem 262(2):137–156

    Article  CAS  Google Scholar 

  • Zhi PX, Qing HZ, Gao QL, Ai BY (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61(3):1027–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Council (NSC 95-2113-M-002-026-MY3, NSC 96-2627-M-002 -013 and NSC 96-2627-M-002 -014) of Taiwan. We are grateful to Messrs Ching-Yen Lin and Chih-Yuan Tang of the Instrumentation Center, National Taiwan University, for their assistance in conducting the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Tsung Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YF., Lin, YW., Lin, ZH. et al. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11, 775–783 (2009). https://doi.org/10.1007/s11051-008-9424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9424-x

Keywords

Navigation