Structural fluctuations in ensembles of nanoparticles

Research Paper


Caused by the interaction between the particles, structural fluctuations influence thermodynamics and order of transformation of an ensemble of nanoparticles. A stringed thermodynamic analysis revealed that, in fluctuating ensembles, the ratio of particle numbers in the equilibrium over the one in the non-equilibrium phase is independent of any metastable in between. Structural transformations in such ensembles, connected to latent heat, are of infinite order. These findings are summarized in a set of theorems ruling structural fluctuations. Finally, the consequences of fluctuations are demonstrated by an example.


Nanocrystalline material Transformation Non-equilibrium phase Thermodynamics Fluctuation Theory Modeling 


  1. Ajayan PM, Marks LD (1988) Quasimelting of small particles. Phys Rev Lett 60:585–587PubMedCrossRefADSGoogle Scholar
  2. Ascencio JA, Perez-Alvarez M, Tehuacanero S, Jose-Yacaman M (2001) Experimental and theoretical studies of instabilities of metal nanoparticles: a new kind of quasimelting. Appl Phys A 73:295–300CrossRefADSGoogle Scholar
  3. Ascencio JA, Mendoza M, Santamaria T, Perez M, Nava I, Gutierrez-Wing C, Jose-Yacaman M (2002) Structural instabilities in passivated gold nanoclusters induced by electron irradiation. J Clust Sci 13:189–197CrossRefGoogle Scholar
  4. Balibar S, Gallet F, Graner F, Rolley E (1990) Crystalline surfaces in Helium. Physica A 163:111–124CrossRefADSGoogle Scholar
  5. Berry S (1998) Size is not everything. Nature 393:212–213CrossRefADSGoogle Scholar
  6. Bondarchuk O, Dougherty DB, Degawa M, Williams ED, Constantin M, Dasgupta C, Das Sarma S (2005) Correlation time for step structural fluctuations. Phys Rev B 71:045426-1–045426-10CrossRefADSGoogle Scholar
  7. Bustamante C, Liphardt J, Ritort F (2005) The nonequilibrium thermodynamics of small systems. Phys Today 58:43–48CrossRefGoogle Scholar
  8. Callen HB (1985) Thermodynamics and an introduction to statistics. Wiley, New YorkGoogle Scholar
  9. Castro T, Reifenberger R, Choi E, Andres RP (1990) Size-dependent melting temperature of individual nanometer sized metallic clusters. Phys Rev B 42:8548–8556CrossRefADSGoogle Scholar
  10. Chang J, Johnson E (2005) Surface and bulk melting of small metal clusters. Philos Magn 85:3617–3627CrossRefADSGoogle Scholar
  11. CRC Handbook of Chemistry and Physics (2006–2007) Taylor & Francis, Boca RatonGoogle Scholar
  12. Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60:2721–2726CrossRefADSGoogle Scholar
  13. Dick K, Dhanasekaran T, Zhang Z, Meisel DJ (2002) Size dependent melting of silica-encapsulated gold nanoparticles. Am Chem Soc 124:2312–2317CrossRefGoogle Scholar
  14. Hendy SC (2005) Stability and phase coexistence in atomic clusters. Phys Rev B 71:115404-1–115404-5CrossRefADSGoogle Scholar
  15. Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619PubMedCrossRefADSGoogle Scholar
  16. Jaeger G (1998) The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci 53:51–81MATHCrossRefMathSciNetGoogle Scholar
  17. Jarcynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693CrossRefADSGoogle Scholar
  18. Lee JG, Mori H (2004) Solid/liquid two-phase structures in isolated nanometer-sized alloy particles. Phys Rev B 70:144105-1–144105-5ADSGoogle Scholar
  19. Meschede D (2006) Gehrtsen physik, 22th edn. Springer, Berlin, pp 255 ffGoogle Scholar
  20. Miedema AR, Boom R (1978) Surface tension and electron density of pure liquid metals. Z Metallkde 69:183–190Google Scholar
  21. Miedema AR (1978) Surface energy of solid metals. Z Metallkde 69:287–292Google Scholar
  22. Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S (2003) Higher surface energy of free nanoparticles. Phys Rev Lett 91:106102-1–106102-4CrossRefADSGoogle Scholar
  23. Oshima Y, Takayanagi K (1993) Solid liquid phase transition of tin particles observed by UHV high resolution transmission electron microscopy: pseudo crystalline phase. Z Phys D 27:287–294CrossRefADSGoogle Scholar
  24. Proykova A, Berry RS (1997) Analogues in clusters of second-order transitions. Z Phys D 40:215–220CrossRefADSGoogle Scholar
  25. Schmidt M, Kusche R, von Issendorf B, Haberland H (1998) Irregular variations in the melting point of size selected atomic clusters. Nature 393:238–240CrossRefADSGoogle Scholar
  26. Shirinyan AS, Wautelet M (2004) Phase separation in nanoparticles. Nanotechnology 15:1720–1731CrossRefADSGoogle Scholar
  27. Vollath D (2008) Nanomaterials, WILEY-VCH, WeinheimGoogle Scholar
  28. Vollath D, Fischer FD, Hagelstein M, Szabo DV (2006) Phases and phase transformations in nanocrystalline ZrO2. J Nanopart Res 8:1003–1016CrossRefGoogle Scholar
  29. Vollath D, Wedemeyer H (1990) Aluminium doped lithium orthosilicate as a breeder material. Adv Ceram 27:3–12Google Scholar
  30. Vollath D, Fischer FD (2008) Structural fluctuations in nanoparticles. J Nanopart Res. doi:10.1007/s11051-007-9326-3
  31. Wang YD, Ren Y, Nie ZH, Liu DM, Zuo L, Choo H, Li H, Liaw PK, Yan JQ, McQueeney RJ, Richardson JW, Huq A (2007) Structural transition of ferromagnetic Ni2MnGa nanoparticles. J Appl Phys 101:063530-6CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.NanoConsultingStutenseeGermany
  2. 2.Montanuniversität Leoben, Institute of MechanicsLeobenAustria

Personalised recommendations