Skip to main content
Log in

Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Simple strategies for producing silver and gold nanoparticles (AgNP and AuNP) along with the corresponding core shell nanoparticles (Au–Ag and Ag–Au) by reduction of the metal salts AgBF4 and HAuCl4 by NaBH4 in water will be presented. The morphologies of the obtained nanoparticles are determined by the order of addition of reactants. The obtained NPs, with sizes in the range 3–40 nm, are characterized by transmission electronic microscopy (TEM) and UV–Vis absorption spectroscopy, so as to evaluate their qualities. Moreover, a direct electrochemical detection protocol based on a cyclic voltammetry in water solution that involves the use of glassy carbon electrode is also applied to characterize the prepared NPs. The developed NPs and the related electroanalytical method seem to be with interest for future sensing and biosensing applications including DNA sensors and immunosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrosi A, Castañeda MT, Killard AJ, Smyth MR, Alegret S, Merkoçi A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240

    Article  CAS  Google Scholar 

  • Berry V, Saraf RF (2005) Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chem Int Ed 44:6668–6673

    Article  CAS  Google Scholar 

  • Brust M, Kiely CJ (2004) Monolayer protected clusters of gold and silver. Colloid Colloid Assemblies 3:96–119

    Google Scholar 

  • Castañeda MT, Merkoçi A, Pumera M, Alegret S (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron 22:1961–1967

    Article  CAS  Google Scholar 

  • Chumanov G, Sokolov K, Cotton TM (1996) Unusual extinction spectra of nanometer-sized silver patricles arranged in two-dimensional arrays. J Phys Chem 100:5166–5168

    Article  CAS  Google Scholar 

  • Davis RE, Swain CG (1960) General acid catalysis of the hydrolysis of sodium borohydride. J Am Chem Soc 82:5949–5950

    Article  CAS  Google Scholar 

  • Davis RE, Bromels E, Kibby CL (1962) Hydrolysis of sodium borohydride in aqueous solution. J Am Chem Soc 84:885–892

    Article  CAS  Google Scholar 

  • Dirk L, Hyning V, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14:7034–7046

    Article  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  • Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181

    Article  Google Scholar 

  • Grace AN, Pandian K (2006) One pot synthesis of polymer protected gold nanoparticles and nanoprisims in glycerol. Colloid Surf A: Physicochem Eng Aspect 290:138–142

    Article  CAS  Google Scholar 

  • Huang JL, Li QB, Sun DH (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:Art. No. 105104

  • Kim D, Park J, An K, Yang NK, Park JG, Hyeon T (2007) Synthesis of hollow iron nanoframes. J Am Chem Soc (Communication) 129:5812–5813

    Article  CAS  Google Scholar 

  • Lu X, Tuan HY, Chen J, Li ZY, Korgel BA, Xia Y (2007) Mechanistic Studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J Am Chem Soc 129:1733–1742

    Article  CAS  Google Scholar 

  • Merkoçi A (2007) Electrochemical biosensing with nanoparticles. FEBS J 274:310–316

    Article  CAS  Google Scholar 

  • Merkoçi A, Aldavert M, Marín S, Alegret S (2005) New materials for electrochemical sensing. V. Nanoparticles for DNA labeling. Trend Anal Chem 24:341–349

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Neri A (1629) L’Arte Vetraria. Florence 7:129

    Google Scholar 

  • Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakawa S, Watanabe SJ (2004) Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J Inorg Biochem 98:46–60

    Article  CAS  Google Scholar 

  • Ozin GA (1992) Nanochemistry: synthesis in diminishing dimensions. Adv Mater 4:612–649

    Article  CAS  Google Scholar 

  • Papavassiliou GC (1976) Surface plasmons in small Au–Ag alloy particles. J Phys F: Metal Phys 6:103–105

    Article  Google Scholar 

  • Pumera M, Castañeda MT, Pividori MI, Eritja R, Merkoçi A, Alegret S (2005) Magnetically trigged direct electrochemical detection of DNA hybridization based Au67 Quantum Dot—DNA—paramagnetic bead conjugate. Langmuir 21:9625–9629

    Article  CAS  Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  • Schmid G, Lehnert A, Malm JO, Bovin JO (1991) Experimental relations of gold (and other metals) to light. Angew Chem Int Ed 30:874–876

    Article  Google Scholar 

  • Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J Phys Chem B 110:19935–19944

    Article  CAS  Google Scholar 

  • Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325

    Article  CAS  Google Scholar 

  • Sun L, Wei G, Song Y, Liu Z, Wang L, Li Z (2006) Solution-phase synthesis of Au@ZnO core-shell composites. Mater Lett 60:1291–1295

    Article  CAS  Google Scholar 

  • Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) New approach to antibacterial treatment of cotton fabric with silver nanoparticle-doped silica using a sol-gel process. J Appl Polym Sci 101:2938–2943

    Article  CAS  Google Scholar 

  • Toshima N, Harada M, Yamazaki Y, Asakura K (1992) Catalytic activity and structural analysis of polymer-protected Au–Pd bimetallic clusters prepared by the simultaneous reduction of HAuCl4 and PdCl2. J Phys Chem 96:9927–9933

    Article  CAS  Google Scholar 

  • Vlčková B, Gu XJ, Tsai DP, Moskovits M (1996) A microscopic surface-enhanced Raman Study of a single adsorbate-covered collodial silver aggregate. J Phys Chem 100:3169–3174

    Article  Google Scholar 

  • Wu X, Zou B, Xu J, Yut B, Tang G, Zhang G, Cheng W (1997) Structural characterization and optical properties of nanometer-sized SnO2 capped by stearic acid. Nanostruct Mat 8:179–189

    Article  CAS  Google Scholar 

  • Xu ZC, Shen CM, Xiao CW (2007) Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology 18:Art. No. 115608

Download references

Acknowledgments

This work is supported by Projects: MAT2005-03553 and Consolider-Ingenio 2010, Project CSD2006-00012. CTQ2007-63913

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Merkoçi.

Additional information

The author Fraser Douglas is on leave from: Chemistry Department, University of Glasgow, Glasgow G12 8QQ, UK.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, F., Yañez, R., Ros, J. et al. Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. J Nanopart Res 10 (Suppl 1), 97–106 (2008). https://doi.org/10.1007/s11051-008-9374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9374-3

Keywords

Navigation