Journal of Nanoparticle Research

, Volume 10, Issue 7, pp 1109–1114 | Cite as

Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids

  • Gang Chen
  • Wenhua Yu
  • Dileep Singh
  • David Cookson
  • Jules Routbort
FOCUS ON NANOFLUIDS

Abstract

Knowledge of the size and distribution of nanoparticles in solution is critical to understanding the observed enhancements in thermal conductivity and heat transfer of nanofluids. We have applied small-angle X-ray scattering (SAXS) to the characterization of SiO2 nanoparticles (10–30 nm) uniformly dispersed in a water-based fluid using the Advanced Photon Source at Argonne National Laboratory. Size distributions for the suspended nanoparticles were derived by fitting experimental data to an established model. Thermal conductivity of the SiO2 nanofluids was also measured, and the relation between the average particle size and the thermal conductivity enhancement was established. The experimental data contradict models based on fluid interfacial layers or Brownian motion but support the concept of thermal resistance at the liquid–particle interface.

Keywords

Nanofluid Thermal conductivity Size effect Interface SAXS Silica colloids Nanoparticles Dispersion 

References

  1. Beaucage G, Kammler HK, Pratsinis SE (2004) Particle size distributions from small-angle scattering using global scattering functions. J Appl Cryst 37:523–535CrossRefGoogle Scholar
  2. Cookson DJ, Kirby N, Knott R, Lee M, Schultz D (2006) Strategies for data collection and calibration on the small angle X-ray scattering camera at ChemMatCARS, Advanced Photon Source. J Synchrotron Rad 13:440–444CrossRefGoogle Scholar
  3. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 125:567–574CrossRefGoogle Scholar
  4. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:31–734CrossRefGoogle Scholar
  5. Ilavsky J, et al. (2005) Irena Version 2.10 http://usaxs.xor.aps.anl.gov/staff/ilavsky/irena.html
  6. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318CrossRefGoogle Scholar
  7. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRefGoogle Scholar
  8. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121:280–289CrossRefGoogle Scholar
  9. Lide DR (eds) (1997) Handbook of chemistry and physics, 78th ed. CRC, Boca Raton New York, pp 12–197Google Scholar
  10. Maxwell JC (1881) A treatise on electricity and magnetism, 2nd ed. Vol. 1, Clarendon, OxfordGoogle Scholar
  11. Nan C, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551CrossRefGoogle Scholar
  12. Potton JA, Daniell GJ, Rainford BD (1988) Particle size distributions from SANS data using the maximum entropy method. J Appl Cryst 21:663–668CrossRefGoogle Scholar
  13. Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRefGoogle Scholar
  14. Prasher R, Bhattacharya P, Phelan PE (2006a) Brownian-motion-based convective–conductive model for the thermal conductivity of nanofluids. J Heat Transfer 128:588–595CrossRefGoogle Scholar
  15. Prasher R, Phelan PE, Bhattacharya P (2006b) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6:1529–1534CrossRefGoogle Scholar
  16. Ren Y, Xie H, Cai A (2005) Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 38:3958–3961CrossRefGoogle Scholar
  17. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transfer 13:474–480CrossRefGoogle Scholar
  18. Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer 46:2665–2672CrossRefGoogle Scholar
  19. Xie H, Wang J, Xi T, Ai F (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572CrossRefGoogle Scholar
  20. Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture. Int J Heat Mass Transfer 48:2926–2932CrossRefGoogle Scholar
  21. Xu Y, Hiew PL, Klippenstein MA, Koga Y (1996) Study of a commercial SiO2 sol and gel by small angle X-ray scattering: effect of sample thickness and interoperation by means of Smoluchowski scheme. Clays Clay Miner 44:197–213CrossRefGoogle Scholar
  22. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AlChE J 49(4):1038–1043Google Scholar
  23. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRefGoogle Scholar
  24. Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanopart Res 6:355–361CrossRefGoogle Scholar
  25. Yu W, France DM, Choi SUS, Routbort JL (2007a) Review and assessment of nanofluid technology for transportation and other applications. http://www.transportation.anl.gov/pdfs/MM/401.pdf
  26. Yu W, Choi SUS, Drobnik J (2007b) Temperature and concentration dependence of effective thermal conductivities of alumina-oil based nanofluid. Presented at the conference of Nanofluids: Fundamentals and Applications, Cooper Mountain, Colorado, 16–20 September 2007Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gang Chen
    • 1
  • Wenhua Yu
    • 2
  • Dileep Singh
    • 3
  • David Cookson
    • 4
  • Jules Routbort
    • 2
  1. 1.Department of Physics and AstronomyOhio UniversityAthensUSA
  2. 2.Energy Systems DivisionArgonne National LaboratoryArgonneUSA
  3. 3.Nuclear Engineering DivisionArgonne National LaboratoryArgonneUSA
  4. 4.Australian Synchrotron Research ProgramAustralian Nuclear Science and Technology OrganizationArgonneUSA

Personalised recommendations