Skip to main content
Log in

Novel method for immobilization of enzymes to magnetic nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The value of coupling biological molecules such as enzymes to solid materials has long been recognized. To date, protein immobilization onto such surfaces often involves covalent coupling, encapsulation, or non-specific adsorption techniques. Here we demonstrate the feasibility of specifically attaching a haloalkane dehalogenase enzyme to silica-coated or uncoated iron oxide superparamagnetic nanoparticles using affinity peptides. The enzyme was cloned from Xanthobacter autotrophicus strain GJ10 into Escherichia coli to produce fusion proteins containing dehalogenase sequences with C-terminal polypeptide repeats that have specific affinity for either silica or iron oxide. The fusion proteins serve dual functions, allowing for specific inorganic surface binding and for enzymatic activity. The degree of fusion protein adsorption to nanoparticle surfaces was found to exceed that of enzymes that had not been activated with affinity sequences, particularly for iron-oxide nanoparticles. The ability to specifically adsorb cloned affinity-tagged dehalogenase was further demonstrated by selectively adsorbing dehalogenase fusion proteins containing an iron-oxide affinity tripeptide directly from cell lysate. The retention of enzymatic activity was found to be dependent upon the surface chemistry of the nanoparticles. An increase in activity was observed after adsorption of fusion proteins onto the surface of nanoparticles modified by treatment with hydrophilic polyethylene glycol or 3-glycidoxypropyltrimethoxysilane molecules. As a result of this work, it is possible to tag an active enzyme with specific peptides that bind to inorganic nanoparticle surfaces. Because the conjugates self assemble, the novel surface-specific conjugate formation procedure is highly efficient and easily scalable for use in large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24:281–287

    Article  CAS  Google Scholar 

  • Astier Y, Bayley H, Howorka S (2005) Protein components for nanodevices. Curr Opin Chem Biol 9(6):576–584

    CAS  Google Scholar 

  • Asuri P, Bale SS, Karajanagi SS, Kane RS (2006a) The protein-nanomaterial interface. Curr Opin Chem Biol 17:562–568

    CAS  Google Scholar 

  • Asuri P, Karajanagi SS, Yang HC, Yim TJ, Kane RS, Dordick JS (2006b) Increasing protein stability through control of the nanoscale environment. Langmuir 22:5833–5836

    Article  CAS  Google Scholar 

  • Atanasijevic T, Shusteff M, Fam P, Jasanoff A (2006) Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci USA 103:14707–14712

    Article  CAS  Google Scholar 

  • Bergmann JG, Sanik J Jr (1957) Determination of trace amounts of chlorine in naphtha. Anal Chem 29:241–243

    Article  CAS  Google Scholar 

  • Brown S (1992) Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. Proc Natl Acad Sci USA 89:8651–8655

    Article  CAS  Google Scholar 

  • Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15:269–272

    Article  CAS  Google Scholar 

  • Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21:7029–7035

    Article  CAS  Google Scholar 

  • Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi K et al (2003) Activity of Candida rugosa lipase immobilized on c-Fe 2 O 3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  • Fernandes EGR, Queiroz AAAD, Abraham GA, Román JS (2006) Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci: Mater Med 17:105–111

    Article  CAS  Google Scholar 

  • Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110–115

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hansen MJ, Natale N, Kornacki P, Paszczynski AJ (2006) Conjugating magnetic nanoparticles for application in health and environmental research. Paper presented at the 48th annual Idaho Academy of Science Meeting and Symposium, Moscow, Idaho, 4 June 2006

  • Harris TJ, von Maltzahn G, Derfus AM, Ruoslahti E, Bhatia SN (2006) Proteolytic actuation of nanoparticle self-assembly. Angew Chem Int Ed Engl 45:3161–3165

    Article  CAS  Google Scholar 

  • Hayashi T, Sano KI, Shiba K, Kumashiro Y, Iwahori K, Yamashita I, Hara M (2006) Mechanism underlying specificity of proteins targeting inorganic materials. Nano Lett 6:515–519

    Article  CAS  Google Scholar 

  • Holloway P, Trevors JT (1998) A colorimetric assay for detecting haloalkane dehalogenase activity. J Microbiol Methods 32:31–36

    Article  CAS  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  • Janssen DB (2004) Evolving haloalkane dehalogenases. Curr Opin Chem Biol 8:150–159

    Article  CAS  Google Scholar 

  • Janssen DB, Pries F, van der Ploeg J, Kazemier B, Terpstra P, Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol 171:6791–6799

    CAS  Google Scholar 

  • Jordan BJ, Hong R, Gider B, Hill J, Emrick T, Rotello VM (2006) Stabilization of α-chymotrypsin at air-water interface through surface binding to gold nanoparticle scaffolds. Soft Matter 2:558–560

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43:6042–6108

    Article  CAS  Google Scholar 

  • Keuning S, Janssen DB, Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol 163:635–639

    CAS  Google Scholar 

  • Koneracká M, Kopcanský P, Timko M, Ramchand CN (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Magn Magn Mater 252:409–411

    Article  Google Scholar 

  • Kouassi GK, Irudayaraj J, McCarty G (2005a) Activity of glucose oxidase functionalized onto magnetic nanoparticles. Biomagnet Res Technol 3:1

    Article  Google Scholar 

  • Kouassi GK, Irudayaraj J, McCarty G (2005b) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1

    Article  Google Scholar 

  • Li D, Teoh WY, Selomulya C, Mal R (2006) Designing magnetic nanoparticles for bioseparation. Paper presented at the American Institute for Chemical Engineers (AIChE) Spring National Meeting, Orlando, FL, 23 April 2006

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7

    Article  CAS  Google Scholar 

  • Liu Q, Xu Z, Finch JA, Egerton R (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 10:3936–3940

    Article  CAS  Google Scholar 

  • Luo S, Wehr NB, Levine RL (2006) Quantitation of protein on gels and blots by infrared fluorescence of coomassie blue and fast green. Anal Biochem 350:233–238

    Article  CAS  Google Scholar 

  • Marczenko Z (1976) Spectrophotometric determination of elements. Halsted Press, New York

    Google Scholar 

  • Marvanova S, Nagata Y, Wimmerova M, Sykorova J, Hynkova K, Damborsky J (2001) Biochemical characterization of broad-specificity enzymes using multivariate experimental design and a colorimetric microplate assay: characterization of the haloalkane dehalogenase mutants. J Microbiol Methods 44:149–157

    Article  CAS  Google Scholar 

  • Naik RR, Brott LL, Clarson SJ, Stone MO (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2:95–100

    Article  CAS  Google Scholar 

  • Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945

    Article  CAS  Google Scholar 

  • Rossi LM, Quach AD, Rosenzweig Z (2004) Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380:606–613

    Article  CAS  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Schanstra JP, Rink R, Pries F, Janssen DB (1993) Construction of an expression and site-directed mutagenesis system of haloalkane dehalogenase in Escherichia coli. Protein Expr Purif 4:479–489

    Article  CAS  Google Scholar 

  • Swanson PE (1999) Dehalogenases applied to industrial-scale biocatalysis. Curr Opin Biotechnol 10:365–369

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2006) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl Environ Microbiol 72:3119–3129

    Article  CAS  Google Scholar 

  • Zhang S (2003a) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  Google Scholar 

  • Zhang W (2003b) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the M. J. Murdock Charitable Trust (grant #2005123JVZ), the Idaho EPSCoR Program (grant #EPS0132626), and the Idaho INBRE Program (NIH grant #P20 RR016454). We express appreciation to Franklin Bailey from the Electron Microscopy Center at the University of Idaho; we thank Cornelia Sawatzky for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej J. Paszczynski.

Additional information

Andrew K. Johnson and Anna M. Zawadzka contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.K., Zawadzka, A.M., Deobald, L.A. et al. Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10, 1009–1025 (2008). https://doi.org/10.1007/s11051-007-9332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9332-5

Keywords

Navigation