Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 713–716 | Cite as

Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles

  • Michael Grouchko
  • Alexander Kamyshny
  • Keren Ben-Ami
  • Shlomo Magdassi
Brief Communication

Abstract

Synthesis of well dispersed copper nanoparticles was achieved by reduction of copper nitrate in aqueous solution using hydrazine monohydrate as a reducer in the presence of preformed silver nanoparticles as catalysts. It has been demonstrated that addition of silver nanoparticles to the reaction mixture leads to formation of aqueous dispersion of copper nanoparticles and also results in a drastic reduction in reaction time compared to procedures reported in the literature. The absorption spectrum of the dispersions, HR-TEM and STEM images and XRD pattern indicate the formation of copper nanoparticles with particle size in the range of 5–50 nm.

Keywords

Silver Copper Nanoparticles Catalysis Colloids 

References

  1. Christopher L, Kitchens CL, McLeod MC, Roberts CB (2003) Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems. J Phys Chem B 107:11331–11338CrossRefGoogle Scholar
  2. Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452CrossRefGoogle Scholar
  3. Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14:451–458CrossRefGoogle Scholar
  4. Hirai H, Wakabayashi H, Komiyama M (1986) Preparation of polymer-protected colloidal dispersions of copper. Bull Chem Soc Jpn 59:367–372CrossRefGoogle Scholar
  5. Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W, Oh PS, Tang SH (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175CrossRefGoogle Scholar
  6. Joshi SS, Patil SF, Iyer V, Mahumuni S (1998) Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 10:1135–1144CrossRefGoogle Scholar
  7. Kamyshny A, Magdassi S (2006) Nanoparticles in confined structures: formation and application. In: Tadros TF (ed) Colloid stability: the role of surface forces, part I. Wiley-VCH, WeinheimGoogle Scholar
  8. Kumar RV, Mastai Y, Diamant Y, Gedanken A (2001) Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J Mater Chem 11:1209–1213CrossRefGoogle Scholar
  9. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896CrossRefGoogle Scholar
  10. Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305CrossRefGoogle Scholar
  11. Liz-Marzán LM (2004) Nanomaterials: formation and color. Mater Today 7(2):26–31CrossRefGoogle Scholar
  12. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15:2208–2217CrossRefGoogle Scholar
  13. Njoki PN, Jacob A, Khan B, Luo J, Zhong C (2006) Formation of gold nanoparticles catalyzed by platinum nanoparticles: assessment of the catalytic mechanism. J Phys Chem B 110:22503–22509PubMedCrossRefGoogle Scholar
  14. Pileni MP, Ninham BW, Gulik-Krzywicki T, Tanori J, Lisiecki I, Filankembo A (1999) Direct relationship between shape and size of template and synthesis of copper metal particles. Adv Mater 11:1358–1362CrossRefGoogle Scholar
  15. Sergeev GB (2001) Nanochemistry of metals. Russ Chem Rev 70:809–825CrossRefGoogle Scholar
  16. Shukla S, Seal S (2003) Electroless copper coating of zirconia utilizing palladium catalyst. J Am Ceram Soc 86:279–285CrossRefGoogle Scholar
  17. Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186CrossRefGoogle Scholar
  18. Wang Y, Chen P, Liu M (2006) Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 17:6000–6006CrossRefADSGoogle Scholar
  19. Wei X, Zhu B, Xu Y (2005) Preparation and stability of copper particles formed using the template of hyperbranched poly(amine-ester). Colloid Polym Sci 284:102–107CrossRefGoogle Scholar
  20. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169PubMedCrossRefGoogle Scholar
  21. Xia X, Xie C, Cai S, Yang Z, Yang X (2006) Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corros Sci 48:3924–3932CrossRefGoogle Scholar
  22. Yeh MS, Yang YS, Lee YP, Lee HF, Yeh YH, Yeh CS (1999) Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J Phys Chem B 103:6851–6857CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Michael Grouchko
    • 1
  • Alexander Kamyshny
    • 1
  • Keren Ben-Ami
    • 1
  • Shlomo Magdassi
    • 1
  1. 1.Casali Institute of Applied Chemistry, Institute of Chemistry, Center for Nano ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations