Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 553–560 | Cite as

Efficient fabrication of transparent antimicrobial poly(vinyl alcohol) thin films

Research Paper


We have explored in situ synthesis of Ag nanoparticles in transparent PVA films in view of increasing areas of application of those films. The two-step procedure consists of ion incorporation in the matrix and subsequent thermal reduction. Smooth and transparent PVA films containing Ag nanoparticles of 5–20 nm were fabricated by this approach. The optical property of the films and the size of metal nanoparticles could be controlled by changing the reaction conditions. By increasing heating temperature, the absorbance and wavelength of surface plasmon resonance (SPR) of the composite film increased, and nanoparticles with larger particle sizes and broader size distributions were obtained. In the temperature range of 130–170 °C, the wavelength of SPR increased with increasing the AgNO3 concentration. At 190 °C, however, the wavelenght of SPR blue-shifted initially when the AgNO3 concentration increased from 10 to 80 mmol/L, and red-shifted thereafter. The composite films showed excellent antimicrobial performance toward bacteria such as Escherchia coli. Such hybrids afford very effective and environment-friendly antimicrobial surface coatings.


Poly(vinyl alcohol) film In-situ synthesis Ag nanoparticles Thermal reduction Coatings 


  1. Abd El-Kader KAM, Abdel Hamied SF (2002) Preparation of poly(vinyl alcohol) films with promising physical properties in comparison with commercial polyethylene film. J Appl Polym Sci 86:1219–1226CrossRefGoogle Scholar
  2. Akamatsu K, Tsuboi N, Hatakenaka Y, Deki S (2000) In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films. J Phys Chem B 104(44):10168–10173CrossRefGoogle Scholar
  3. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317CrossRefGoogle Scholar
  4. Besson S, Gacoin T, Ricolleau C, Boilot JP (2003) Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem Commun 360–361Google Scholar
  5. Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1993) Optically transparent nanometal composite membranes. Adv Mater 5(2):135–136CrossRefGoogle Scholar
  6. Fukumi K, Chayahara A, Kadono K, Sakaguchi T, Horino Y, Miya M, Fujii K, Hayakawa J, Satou M (1994) Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. J Appl Phys 75(6):3075–3080CrossRefGoogle Scholar
  7. He J, Kunitake T (2006a) In situ fabrication of metal nanoparticles in solid matrices. In: Plieni M-P (ed) Nanocrystals forming mesoscopic structures. Wiley-VCH, Weinheim, pp 91–117Google Scholar
  8. He J, Kunitake T (2006b) Are ceramic nanofilms a soft matter? Soft Matter 2:119–125CrossRefGoogle Scholar
  9. He J, Ichinose I, Fujikawa S, Kunitake T, Nakao A (2002a) A general, efficient method of incorporation of metal ions into ultrathin TiO2 films. Chem Mater 14:3493–3500CrossRefGoogle Scholar
  10. He J, Ichinose I, Kunitake T, Nakao A (2002b) In situ synthesis of noble metal nanoparticles in ultrathin TiO2-gel Films by a combination of ion-exchange and reduction processes. Langmuir 18(25):10005–10010CrossRefGoogle Scholar
  11. He J, Ichinose I, Fujikawa S, Kunitake T, Nakao A, (2002c) Reversible conversion of nanoparticles of metallic silver and silver oxide in ultrathin TiO2 films: a chemical transformation in nano-space. Chem Commun 1910–1911Google Scholar
  12. He J, Ichinose I, Kunitake T, Nakao A, Shiraishi Y, Toshima N (2003) Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: nanoparticle morphology and catalytic activity. J Am Chem Soc 125:11034–11040PubMedCrossRefGoogle Scholar
  13. Hong KH, Park JL, Sul IH, Youk JH, Kang TJ (2006) Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci: Part B: Polym Phys 44:2468–2474CrossRefGoogle Scholar
  14. Horiuchi S, Fujita T, Hayakawa T, Nakao Y (2003) Three-dimensional nanoscale alignment of metal nanoparticles using block copolymer films as nanoreactors. Langmuir 19(7):2963–2973CrossRefGoogle Scholar
  15. Hosoya Y, Suga T, Yanagawa T, Kurokawa Y (1997) Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J Appl Phys 81(3):1475–1480CrossRefADSGoogle Scholar
  16. Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W, Oh PS, Tang SH (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13(2):172–175CrossRefGoogle Scholar
  17. Joly S, Kane R, Radzilowski L, Wang T, Wu A, Cohen RE, Thomas EL, Rubner MF (2000) Multilayer nanoreactors for metallic and semiconducting particles. Langmuir 16:1354–1359CrossRefGoogle Scholar
  18. Karthikeyan B (2005) Spectroscopic studies on Ag-polyvinyl alcohol nanocomposite films. Physica B 364:328–332CrossRefADSGoogle Scholar
  19. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93:117–121CrossRefGoogle Scholar
  20. Nogami M, Nagasaka K, Suzuki T (1992) Sol-gel synthesis of cadmium telluride-microcrystal-doped silica glasses. J Am Ceram Soc 75(1):220–223CrossRefGoogle Scholar
  21. Nogami M, Abe Y, Nakamura A (1995) Cu microcrystals in sol-gel derived glasses. J Mater Res 10:2648–2652CrossRefADSGoogle Scholar
  22. Pileni MP (2002) Self-assemblies of nanocrystals: fabrication and collective properties. In: Feldheim DL, Foss CA Jr (eds) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New YorkGoogle Scholar
  23. Porel S, Singh S, Harsha SS, Rao DN, Radhakrishnan TP (2005) Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17(1):9–12CrossRefGoogle Scholar
  24. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727CrossRefGoogle Scholar
  25. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201CrossRefGoogle Scholar
  26. Wang X, Liu S, He J (2006a) Fabrication and characteristics of Ag-PVA and Ag-PVA/TiO2 UltraThin Composite Films. Photogr Sci Photochem 24(6):421–427Google Scholar
  27. Wang Q, Yu H, Zhong L, Liu J, Sun J, Shen J (2006b) Incorporation of silver ions into ultrathin titanium phosphate films: in situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem Mater 18(7):1988–1994CrossRefGoogle Scholar
  28. Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103(1):125–133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Shuxia Liu
    • 1
  • Junhui He
    • 1
  • Jianfeng Xue
    • 2
  • Wenjun Ding
    • 2
  1. 1.Functional Nanomaterials Laboratory and Key Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and ChemistryChinese Academy of SciencesHaidianqu, BeijingPeople’s Republic of China
  2. 2.Biological DepartmentGraduate University of Chinese Academy of SciencesShijingshanqu, BeijingPeople’s Republic of China

Personalised recommendations