Skip to main content

Advertisement

Log in

Exploiting the high-affinity phosphonate–hydroxyapatite nanoparticle interaction for delivery of radiation and drugs

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hydroxyapatite is biocompatible and used in various biomedical applications. Here, we generated hydroxyapatite nanoparticles (HNPs) of various sizes (40–200 nm) and demonstrated that they can be stably loaded with drugs or radioisotopes by exploiting the high-affinity HA–(poly)phosphonate interaction. Clinically available phosphonates, clodronate, and Tc-99m-methylene-diphosphonate (Tc-99m-MDP), were efficiently loaded onto HNPs within 15 min. Biodistribution of radiolabeled HNP-MDP-Tc99m in mice was monitored non-invasively using microSPECT-CT. Imaging and dosimetry studies indicated that the HNPs, regardless of size, were quickly taken up by Kupffer cells in the liver after systemic administration into mice. Clodronate loaded onto HNPs remained biologically active and were able to result in selective depletion of Kupffer cells. This method of drug or isotope loading on HA is fast and easy as it eliminates the need for additional surface modifications of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barroug A, Glimcher MJ (2002) Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res 20:274–280

    Article  CAS  Google Scholar 

  • Bernardi G (1973) Chromatography of proteins on hydroxyapatite. Methods Enzymol 27:471–479

    CAS  Google Scholar 

  • Chuah MK, Schiedner G, Thorrez L, Brown B, Johnston M, Gillijns V, Hertel S, Van Rooijen N, Lillicrap D, Collen D, VandenDriessche T, Kochanek S (2003) Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood 101:1734–1743

    Article  CAS  Google Scholar 

  • Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176

    Article  CAS  Google Scholar 

  • Doonan S (2004) Chromatography on hydroxyapatite. Methods Mol Biol 244:191–194

    CAS  Google Scholar 

  • Dumbleton J, Manley MT (2004) Hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J Bone Joint Surg Am 86A:2526–2540

    Google Scholar 

  • Fleisch H, Russell RG, Bisaz S, Casey PA, Muhlbauer RC (1968) The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution. Calcif Tissue Res 2 (Suppl 1):10–10a

    Article  Google Scholar 

  • Fleisch H, Russell RG, Francis MD (1969) Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 165:1262–1264

    Article  CAS  Google Scholar 

  • Gorbunoff MJ (1985) Protein chromatography on hydroxyapatite columns. Methods Enzymol 117:370–380

    Article  CAS  Google Scholar 

  • Grillenberger KG, Glatz S, Reske SN (1997) Rhenium-188 labeled hydroxyapatite and rhenium-188 sulfur colloid. In vitro comparison of two agents for radiation synovectomy. Nuklearmedizin 36:71–75

    CAS  Google Scholar 

  • Grimes JS, Bocklage TJ, Pitcher JD (2006) Collagen and biphasic calcium phosphate bone graft in large osseous defects. Orthopedics 29:145–148

    Google Scholar 

  • Itokazu M, Sugiyama T, Ohno T, Wada E, Katagiri Y (1998) Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res 39:536–538

    Article  CAS  Google Scholar 

  • Jung A, Bisaz S, Fleisch H (1973) The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 11:269–280

    Article  CAS  Google Scholar 

  • Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ (2003) Enhanced bioactivity of a poly (propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Biomed Mater Eng 13:115–124

    CAS  Google Scholar 

  • Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, Hamada Y, Takahashi J (2004) Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 25:3807–3812

    Article  CAS  Google Scholar 

  • McEwan AJ (2000) Use of radionuclides for the palliation of bone metastases. Semin Radiat Oncol 10:103–114

    Article  CAS  Google Scholar 

  • Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A (2006) Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release 110:260–265

    Article  CAS  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    Article  CAS  Google Scholar 

  • O’Duffy EK, Clunie GP, Lui D, Edwards JC, Ell PJ (1999) Double blind glucocorticoid controlled trial of samarium-153 particulate hydroxyapatite radiation synovectomy for chronic knee synovitis. Ann Rheum Dis 58:554–558

    Article  CAS  Google Scholar 

  • Ostovic D, Stelmach C, Hulshizer B (1993) Formation of a chromophoric complex between alendronate and copper(II) ions. Pharm Res 10:470–472

    Article  CAS  Google Scholar 

  • Pandey U, Mukherjee A, Chaudhary PR, Pillai MR, Venkates M (2001) Preparation and studies with 90Y-labelled particles for use in radiation synovectomy. Appl Radiat Isot 55:471–475

    Article  CAS  Google Scholar 

  • Paul W, Sharma CP (2003) Ceramic drug delivery: a perspective. J Biomater Appl 17:253–264

    Article  CAS  Google Scholar 

  • Pratten MK, Lloyd JB (1986) Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta 881:307–313

    CAS  Google Scholar 

  • van Rooijen N, van Kesteren-Hendrikx E (2003) In vivo depletion of macrophages by liposome-mediated “suicide”. Methods Enzymol 373:3–16

    Google Scholar 

  • Russell RG (2006) Bisphosphonates: from bench to bedside. Ann NY Acad Sci 1068:367–401

    Article  CAS  Google Scholar 

  • Saag KG (2003) Glucocorticoid-induced osteoporosis. Endocrinol Metab Clin North Am 32:135–157, vii

    Article  CAS  Google Scholar 

  • Schiedner G, Hertel S, Johnston M, Dries V, van Rooijen N, Kochanek S (2003) Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther 7:35–43

    Article  CAS  Google Scholar 

  • Selby PL, Davie MW, Ralston SH, Stone MD (2002) Guidelines on the management of Paget’s disease of bone. Bone 31:366–373

    Article  CAS  Google Scholar 

  • Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3:123–193

    CAS  Google Scholar 

  • Shinto Y, Uchida A, Korkusuz F, Araki N, Ono K (1992) Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Joint Surg Br 74:600–604

    CAS  Google Scholar 

  • Uchida A, Shinto Y, Araki N, Ono K (1992) Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J Orthop Res 10:440–445

    Article  CAS  Google Scholar 

  • Uchtman V (1972) Structural investigations of calcium binding molecules. II. The crystal and molecular structures of calcium dihydrogen ethane-1-hydroxy-1,1-diphosphonate dihydrate, CaC(CH3)(OH)(PO3H)2.2H2O; implications for polynuclear complex formation. J Phys Chem 76:1304–1310

    Article  CAS  Google Scholar 

  • Unni PR, Chaudhari PR, Venkatesh M, Ramamoorthy N, Pillai MR (2002) Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy. Nucl Med Biol 29:199–209

    Article  CAS  Google Scholar 

  • Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56

    CAS  Google Scholar 

  • Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG (1997) Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol 71:624–629

    CAS  Google Scholar 

  • Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N, Crystal RG (1997) Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther 8:1675–1684

    CAS  Google Scholar 

  • Yeh HS, Berenson JR (2006) Treatment for myeloma bone disease. Clin Cancer Res 12:6279s–6284s

    Article  CAS  Google Scholar 

  • Zhang S, Gonsalves KE (1997) Preparation and characterization of thermally stable nanohydroxyapatite. J Mater Sci Mater Med 8:25–28

    Article  Google Scholar 

  • Zhang YF, Cheng XR, Chen Y, Shi B, Chen XH, Xu DX, Ke J (2007) Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349

    Article  CAS  Google Scholar 

  • Zhu SH, Huang BY, Zhou KC, Huang SP, Liu F, Li YM, Xue ZG, Long ZG (2004) Hydroxyapatite Nanoparticles as a Novel Gene Carrier. J Nanopart Res 6:307–311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Fraternal Order of Eagles, Mayo Clinic Cancer Center, Mayo Foundation and the School of Materials Engineering, Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kah-Whye Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, H.T., Loo, J.S.C., Boey, F.Y.C. et al. Exploiting the high-affinity phosphonate–hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J Nanopart Res 10, 141–150 (2008). https://doi.org/10.1007/s11051-007-9239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9239-1

Keywords

Navigation