Skip to main content
Log in

Preparation and formation mechanism of strong violet luminescent CdS quantum dots by using a ligand exchange strategy

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple and general method has been proposed for preparing strong violet emitting CdS quantum dots, in which a ligand exchange strategy was applied to surface passivation and functionalization with good reproducibility. The resulting quantum dots showed a visible violet luminescence with emission peak centered near 423 nm and photoluminescence quantum yields reached over 30%. Additionally, different mercapto-compounds used as ligands can make different functionalized surfaces, favoring quantum dots dispersion in different media and their further applications. It was observed that the band edge emission has the main contribution to the bright violet luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Aldana, N. Lavelle, Y. Wang, X. Peng 2005. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc. 127:2496

    Article  CAS  Google Scholar 

  • A.P. Alivisatos 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933

    Article  CAS  Google Scholar 

  • D. Battaglia, X. Peng 2002. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2:1027

    Article  CAS  Google Scholar 

  • W.C.W. Chan, S. Nie 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016

    Article  CAS  Google Scholar 

  • A.R. Clapp, I.L. Medintz, J.M. Mauro, B.R. Fisher, M.G. Bawendi, H. Mattoussi 2004. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126:301

    Article  CAS  Google Scholar 

  • A.R. Clapp, I.L. Medintz, H. Mattoussi 2006. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chem. Phys. Chem. 7:47

    CAS  Google Scholar 

  • R. Comparelli, F. Zezza, M. Striccoli, M.L. Curri, R. Tommasi, A. Agostiano 2003 Improved optical properties of CdS quantum dots by ligand exchange. Mater. Sci. Eng. C 23:1083

    Article  Google Scholar 

  • J.W. Eastman 1967. Quantitative spectrofluorimetry - the fluorescence quantum yield of quinine sulfate. Photochem. Photobiol. 6:55

    Article  CAS  Google Scholar 

  • F. Fleischhaker, R. Zentel 2005. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 17:1346

    Article  CAS  Google Scholar 

  • N. Gaponik, D. Talapin, H. Weller 2002. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106:7177

    Article  CAS  Google Scholar 

  • A. Henglein 1989. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89:1861

    Article  CAS  Google Scholar 

  • E. Jang, S. Jun, Y. Pu 2003. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem. Commun. 24:2964

    Article  Google Scholar 

  • E. Jang, S. Jun, Y. Chung, L. Pu 2004. Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals. J. Phys. Chem. B 108:4597

    Article  CAS  Google Scholar 

  • S. Jun, Jang E. 2005. Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chem. Commun. 36:4616

    Article  Google Scholar 

  • S.Y. Lee, Harris M.T. 2006. Surface modification of magnetic nanoparticles capped by oleic acids:Characterization and colloidal stability in polar solvents. J. Colloid Interface Sci. 293:401

    Article  CAS  Google Scholar 

  • Y. Liu, M. Kim, Y. Wang, Y.A. Wang, X. Peng 2006. Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups. Langmuir 22:6341

    Article  CAS  Google Scholar 

  • C.B. Murray, D.J. Norris, M.G. Bawendi 1993. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706

    Article  CAS  Google Scholar 

  • D.J. Norris, M.G. Bawendi 1995. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53:16338

    Article  Google Scholar 

  • N.M. Park, T.S. Kim, S.J. Park 2001. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78:2575

    Article  CAS  Google Scholar 

  • X. Peng, J. Wickham, A.P. Alivisatos 1998. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120:5343

    Article  CAS  Google Scholar 

  • M.M. Piepenbrock, S.M. Kelly, M. O’Neill 2006. A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement. J. Am. Chem. Soc. 128:7087

    Article  CAS  Google Scholar 

  • L. Qu, X. Peng 2002. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124:2049

    Article  CAS  Google Scholar 

  • A. Shavel, N. Gaponik, A. Eychmuller 2004. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. J. Phys. Chem. B 108:5905

    Article  CAS  Google Scholar 

  • J.S. Steckel, J.P. Zimmer, M.G. Bawendi 2004. Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew. Chem., Int. Ed. 43:2154

    Article  CAS  Google Scholar 

  • D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller 2001. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:207

    Article  CAS  Google Scholar 

  • Q. Wang, D. Pan, X. Ji 2005. A new two-phase route to high-quality CdS nanocrystals. Chem. Eur. J. 11:3843

    Article  CAS  Google Scholar 

  • U. Wendy, J.J. Dittmer, A.P. Alivisatos 2002. Hybrid nanorod-polymer solar cells. Science 295:2425

    Article  Google Scholar 

  • N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid 2004. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4:383

    Article  CAS  Google Scholar 

  • S.F. Wuister, I. Swart, F. van Driel, S.G. Hickey, C. de Mello Donega 2003. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 3:503

    Article  CAS  Google Scholar 

  • S. Xu, S. Kumar, T. Nann 2006. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 128:1054

    Article  CAS  Google Scholar 

  • W.W. Yu, L. Qu, W. Guo, X. Peng 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:2854

    Article  CAS  Google Scholar 

  • W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin 2004. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16:3318

    Article  CAS  Google Scholar 

  • W.W. Yu, X. Peng 2002. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem., Int. Ed. 41:2368

    Article  CAS  Google Scholar 

  • F. Zezza, R. Comparelli, M. Striccoli, M.L. Curri, R. Tommasi, A. Agostiano, M. Della Monica 2003 High quality CdS nanocrystals: surface effects. Synth. Met. 139:597

    Article  CAS  Google Scholar 

  • Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai, Y. Baba 2006. Uncoated, broad fluorescent, and size-homogeneous CdSe quantum dots for bioanalyses. Anal. Chem. 78:321

    Article  CAS  Google Scholar 

  • B. Zorman, M.V. Ramakrishna, R.A. Friesner 1995. Quantum confinement effects in CdSe quantum Dots. J. Phys. Chem. 99:7649

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from National Natural Science Foundation of China (Contract No.20575002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Qing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, TL., Xia, YS., Diao, XL. et al. Preparation and formation mechanism of strong violet luminescent CdS quantum dots by using a ligand exchange strategy. J Nanopart Res 10, 59–67 (2008). https://doi.org/10.1007/s11051-007-9221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9221-y

Keywords

Navigation