Skip to main content
Log in

Synthesis and nonlinear light scattering of microemulsions and nanoparticle suspensions

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Microemulsions composed of normal or inverse micellar solutions and aqueous suspensions of pristine (uncoated) or silica-coated iron oxide nanoparticles, mainly γ-Fe2O3, were synthesised and their optical limiting properties investigated. The microemulsions are colorless solutions with high transparency for visible wavelengths while the aqueous suspensions of iron oxide are of pale yellow colour. Optical limiting experiments performed in 2 mm cells using a f/5 optical system with a frequency doubled Nd:YAG laser delivering 5 ns pulses with 10 Hz repetition rate, showed clamping levels of ∼3 μJ for the suspensions of both pristine and silica-coated iron oxide nanoparticles. A strong photoinduced nonlinear light scattering was observed for the water-in-oil microemulsion and the aqueous suspensions of nanoparticles while oil-in-water microemulsions did not show a significant nonlinear effect. Measurements carried out using an integrating sphere further verified that the photoinduced nonlinear light scattering is the dominating nonlinear mechanism while the nonlinear absorption of iron oxide nanoparticles is negligible at 532 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brusatin G., Signorini R. (2002) Linear and nonlinear optical properties of fullerenes in solid state materials. J. Mater. Chem. 12:1964

    Article  CAS  Google Scholar 

  • Hashimoto T., Yamada T., Yoko T. (1996) Third-order nonlinear optical properties of sol–gel derived α-Fe2O3, γ-Fe2O3, and Fe3O4 thin films. J. Appl. Phys. 80:3184

    Article  CAS  Google Scholar 

  • Hollins R.C. (1999) Materials for optical limiters. Curr. Opin. Solid State Mater. Sci. 4:189

    Article  CAS  Google Scholar 

  • Joudrier V., Bourdon P., Hache F., Flytzanis C. (1998) Nonlinear light scattering in a two-component medium: optical limiting application. Appl. Phys. B 67:627

    Article  CAS  Google Scholar 

  • Khoo I.C., Wood M.V., Guenther B.D., Shih M.Y., Chen P.H. (1998) Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array. J. Opt. Soc. Am. B. 15:1533

    CAS  Google Scholar 

  • Leser M.E., Kooijman M., Pollitte J., Magid L.J. (1991) Effect of the macrobicyclic ligand Kryptofix 222 on AOT/water/cyclohexane microemulsions. J. Phys. Chem. 95:9013

    Article  CAS  Google Scholar 

  • Liu L.L., Zhang S., Qin Y., Guo Z.X., Ye C., Zhu D. (2003) Solvent effects of optical limiting properties of carbon nanotubes. Synth. Met. 135:853

    Article  CAS  Google Scholar 

  • Mansour K., Soileau M.J., Van Stryland E.W. (1992) Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9:1100

    CAS  Google Scholar 

  • Massart R. (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17:1247

    Article  Google Scholar 

  • Mishra S.R., Rawat H.S., Laghate M. (1998) Nonlinear absorption and optical limiting in metalloporphyrins. Opt. Comm. 147:328

    Article  CAS  Google Scholar 

  • Nashold K.M., Walter D.P. (1995) Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions. J. Opt. Soc. Am. B 12:1228

    Article  CAS  Google Scholar 

  • Petit C., Pileni M.P. (1997) Nanosize cobalt boride particles: Control of the size and properties. J. Magn. Magn. Mater. 166:82

    Article  CAS  Google Scholar 

  • Philipse A.P., van Vruggen M.P.B., Pathmamanoharan C. (1994) Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10:92

    Article  CAS  Google Scholar 

  • Tiejun X., Hagan D.J., Dogariu A., Said A.A., van Stryland E.W. (1997) Optimization of optical limiting devices based on excited-state absorption. Appl. Opt. 36:4110

    Google Scholar 

  • Umeton C., Cipparrone G., Simoni F. (1986) Power limiting and optical switching with nematic liquid-crystal films. Opt. Quant. Electron. 18:312

    Article  CAS  Google Scholar 

  • Vicari L. (2002) Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique. Eur. Phys. J. E 9:335

    Article  CAS  Google Scholar 

  • Vincent D., Cruickshank J. (1997) Optical limiting with C60 and other fullerenes. Appl. Opt. 36:7794

    Article  CAS  Google Scholar 

  • Vivien L., Anglaret E., Riehl D., Bacou F., Journet C., Goze C., Andrieux M., Brunet M., Lafonta L., Bernier P., Hache F. (1999) Single-wall carbon nanotubes for optical limiting. Chem. Phys. Lett. 307:317

    Article  CAS  Google Scholar 

  • Wang L., Muhammed M. (1995) Synthesis of nanophase oxalate precursors of YBaCuO superconductor by coprecipitation in microemulsions. J. Mater. Chem. 5:309

    Article  Google Scholar 

  • Wei T.H., Hagan D.J., Sence M.J., Van Stryland E.W., Perry J.W., Coulter D.R. (1992) Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines. Appl. Phys. B 54:46

    Article  Google Scholar 

  • Yu B., Zhu C., Gan F. (2000) Large nonlinear optical properties of Fe2O3 nanoparticles. Physica E 8:360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Salazar-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Alvarez, G., Björkman, E., Lopes, C. et al. Synthesis and nonlinear light scattering of microemulsions and nanoparticle suspensions. J Nanopart Res 9, 647–652 (2007). https://doi.org/10.1007/s11051-006-9206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9206-2

Keywords

Navigation