Skip to main content

Effect of the shell on the transport properties of poly(glycerol) and Poly(ethylene imine) nanoparticles

Abstract

Dendritic core–shell architectures containing poly (glycerol) and poly (ethylene imine) cores and poly(lactide) shell (PG-PLA and PEI-PLA respectively) were synthesized. Analogous of these core–shell architectures containing the same cores but poly (L-lactide) shell (PG-PLLA and PEI-PLLA, respectively) were also synthesized. In this work PG and PEI were used as macroinitiator for ring opening polymerization of the lactid and L-lactide monomers. Different molar ratios of monomer to end functional groups of PG ([LA]/[OH]) and PEI ([LA]/[NHn] (n = 1 or 2)) were used to prepare the core–shell architectures with different shell thickness. These core–shell architectures were able to encapsulate and transport the small guest molecules. Their transport capacity (TC) depended on the type and thickness of the shells. TC of core–shell architectures containing PLLA shell was higher than that for their analogs containing PLA shell. The diameter of core–shell architectures was between 20–80 nm. The rate of release of guest molecules from chloroform solution of nanocarriers to water phase was investigated and it depended on the type of the core, shell and solvent.

This is a preview of subscription content, access via your institution.

References

  1. Adeli M. & R. Hagg, 2006. Multiarm star nanocarriers containing a poly(ethylene imine) core and polylactide arms J. Polym. Sci. Part A: Polym, Chem. 44, 5740–5749

    Google Scholar 

  2. Astruc D., Chardac F. 2001 Chem Rev 101:2991

    Article  CAS  Google Scholar 

  3. Daniel M.-C., Astruc D. 2004 Chem Rev 104:293

    Article  CAS  Google Scholar 

  4. Frey H. & R. Haag, 2001. Hyperbranched polymers in industry In: Cahn R.H., Buschow K.H.J., Flemings M.C., Ilschner B., Kramer E.J. and Majahan. S. eds. Encyclopedia of Materials: Science and Technology. Elsevier Science Ltd, Oxford, pp. 3997–4000.

  5. Frey H., Haag R. 2002 Rev. Mol. Biotechnol. 90:257

    Article  CAS  Google Scholar 

  6. Haag R. 2004a Angew Chem 116:280

    Article  Google Scholar 

  7. Haag R. 2004b Angew Chem Int Ed 43:278

    Article  CAS  Google Scholar 

  8. Haag R., Krämer M., Stumbé J.-F., Kautz H. 2001 Poly. Mat. Sci. Eng. 84:69

    CAS  Google Scholar 

  9. Haag R., Krämer M., Stumbé J.-F., Krause S., Komp A., Prokhorova S. 2002a Polymer Preprints 43:328

    CAS  Google Scholar 

  10. Haag R., H. Türk & S. Meeling, 2002b. DE10211664A1.

  11. Haag R., Stumbe´ J.-F., Sunder A., Frey H., Hebel A. 2000a Macromolecules 33:8158

    Article  CAS  Google Scholar 

  12. Haag R., Sunder A., Stumbé J.-F. 2000b J. Am. Chem. Soc. 122:2954

    Article  CAS  Google Scholar 

  13. Krämer M., Stumbé J.-F., Grimm G., Kaufmann B., Ute Krüger U., Weber M., Haag R. 2004 ChemBioChem 5:1081

    Article  Google Scholar 

  14. Krämer M., Stumbé J.-F., Türk H., Krause S., Komp A., Delineau L., Prokhorova S., Kautz H., Haag R. 2002a Angew. Chem. Int. Ed. 41:4252

    Article  Google Scholar 

  15. Krämer M., Stumbé J.-F., Türk H., Krause S., Komp A., Delineau L., Prokhorova S., Kautz H., Haag R. 2002b Angew. Chem. 114:4426

    Article  Google Scholar 

  16. Roark D.N., B.C. McKusick & U. Steuerle, 2000. In: Ullmanns Encyclopedia of Industrial Chemistry, 6th edn. Electronic Release, Aziridines.

  17. Scherr G., U. Steuerle & R. Fikentscher, 1997. In: Kirk-Othmer. Imines, cyclic. 4th edn., Vol. 14, pp.2–40.

  18. Steuerle U., W. Reuther & W. Harder, 1997. BASF AG, WO 97/21760.

  19. Stiriba S.-E., Frey H., Haag R. 2002a Angew. Chem. 114:1385

    Article  Google Scholar 

  20. Stiriba S.-E., Frey H., Haag R. 2002b Angew. Chem. Int. Ed. 41:1329

    Article  CAS  Google Scholar 

  21. Stiriba S.-E., Kautz H., Frey H. 2002c J. Am. Chem. Soc. 124:9698

    Article  CAS  Google Scholar 

  22. Sunder A., Krämer M., Hanselmann R., Mülhaupt R., Frey H. 1999a Angew. Chem. 111:3758

    Article  Google Scholar 

  23. Sunder A., Krämer M., Hanselmann R., Mülhaupt R., Frey H. 1999b Angew. Chem. Int. Ed. 38:3552

    Article  CAS  Google Scholar 

  24. Sunder A., Mülhaupt R., Haag R., Frey H. 2000a Macromolecules 33:253

    Article  CAS  Google Scholar 

  25. Sunder A., Türk H., Haag R., Frey H. 2000b Macromolecules 33:7682

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Adeli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adeli, M., Haag, R. & Zarnegar, Z. Effect of the shell on the transport properties of poly(glycerol) and Poly(ethylene imine) nanoparticles. J Nanopart Res 9, 1057–1065 (2007). https://doi.org/10.1007/s11051-006-9188-0

Download citation

Keywords

  • nanoparticles
  • nanocarriers
  • core–shell architectures
  • poly(ethylene imine)
  • poly(glycerol)
  • transport phenomena