Journal of Nanoparticle Research

, Volume 9, Issue 6, pp 1067–1071 | Cite as

Organic-ligand-assisted supercritical hydrothermal synthesis of titanium oxide nanocrystals leading to perfectly dispersed titanium oxide nanoparticle in organic phase

  • Tahereh Mousavand
  • Jing Zhang
  • Satoshi Ohara
  • Mitsuo Umetsu
  • Takashi Naka
  • Tadafumi Adschiri
Research Paper

Abstract

Titanium oxide (TiO2) nanocyrstals which are perfectly dispersed in organic solvents are synthesized by organic-ligand-assisted supercritical hydrothermal synthesis. The addition of hexaldehyde to the supercritical hydrothermal synthesis of TiO2 leads to the in-situ surface modification, which enables the synthsized TiO2 nanocrystals to be perfectly dispersed in iso-octane because of its hydrophobic nature. Further, the one-pot synthesis of hybrid materials results in the significant reduction of the particles size, probably due to the capping effect of hexaldehyde to suppress the particles growth.

Keywords

dispersion metal oxide mixing nanoparticle supercritical hydrothermal synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adschiri T., Kanazawa K., Arai K. (1992). Rapid and continuous hydrothermal crystallization of metal-oxide particles in supercritical water. J. Am. Ceram. Soc. 75:1019–1022CrossRefGoogle Scholar
  2. Adschiri T., Hakuta Y., Sue K., Arai K. (2001). Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J. Nanopart. Res. 3:227–235CrossRefGoogle Scholar
  3. Bonnemann H., Braun G., Brijoux W., Brinkmann R., Tilling A.S., Seevogel K., Siepen K. (1996). Nanoscale colloidal metals and alloys stabilized by solvents and surfactants – Preparation and use as catalyst precursors. J. Organomet. Chem. 520:143–162CrossRefGoogle Scholar
  4. Horn D., Rieger J. (2001). Organic nanoparticles in the aqueous phase – theory, experiment, and use. Angew. Chem. Int. Ed. 40:4331–4361CrossRefGoogle Scholar
  5. Li L.M., Beniash E., Zubarev E.R., Xiang W., Rabatic B.M., Zhang G., Stupp S.I., (2003). Assembling a lasing hybrid material with supramolecular polymers and nanocrystals. Nat. Mater. 2:689–694CrossRefGoogle Scholar
  6. Mousavand T., Takami S., Umetsu M., Ohara S., Adschiri T. (2006a). Supercritical hydrothermal synthesis of organic–inorganic hybrid nanoparticles. J. Mater. Sci. 41:1445–1448CrossRefGoogle Scholar
  7. Mousavand T., S. Ohara, M. Umetsu, J. Zhang, S. Takami, T.␣Naka & T. Adschiri, 2006b. Hydrothermal synthesis and in␣situ surface modification of boehmite nanoparticles in supercritical water. J. Supercritical Fluids. (accepted)Google Scholar
  8. Sanchez C., De G.J., Ribot F., Lalot T., Mayer C.R., Cabuil V. (2001). Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13:3061–3083CrossRefGoogle Scholar
  9. Singhal A., Skandan G., Wang A., Glumac N., Kear B.H., Hunt R.D. (1999). On nanoparticle aggregation during vapor phase synthesis. Nanostruct. Mater. 11:545–552CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Tahereh Mousavand
    • 1
  • Jing Zhang
    • 1
  • Satoshi Ohara
    • 1
  • Mitsuo Umetsu
    • 1
  • Takashi Naka
    • 1
  • Tadafumi Adschiri
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations