Journal of Nanoparticle Research

, Volume 9, Issue 2, pp 203–213 | Cite as

A simple and versatile mini-arc plasma source for nanocrystal synthesis

  • Junhong Chen
  • Ganhua Lu
  • Liying Zhu
  • Richard C. Flagan
Article

Abstract

Nanocrystals in the lower-nanometer-size range are attracting growing interest due to their unique properties. A simple and versatile atmospheric direct current mini-arc plasma source has been developed to produce nanoparticles as small as a few nanometers. The nanoparticles are formed by direct vaporization of solid precursors followed by a rapid quenching. Both semiconductor tin oxide and metallic silver nanoparticles have been produced at rates of 1–10 mg/h using the mini-arc source. Transmission electron microscopy and X-ray diffraction analyses indicate that most nanoparticles as produced are nonagglomerated and crystalline. Size distributions of nanoparticles measured with an online scanning electrical mobility spectrometer are broader than the self-preserving distribution, suggesting that the nanoparticle growth is coagulation-dominated, and that the particles experience a range of residence times. The electrical charges carried by as-produced aerosol nanoparticles facilitate the manipulation of nanoparticles. The new mini-arc plasma source hence shows promise to accelerate the exploration of nanostructured materials.

Keywords

nanoparticles nanocrystals arc plasma synthesis nonagglomerated nanoengineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alivisatos A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271: 933–937CrossRefGoogle Scholar
  2. Backman U., Jokiniemi J.K., Auvinen A., Lehtinen K.E.J. (2002) The effect of boundary conditions on gas-phase synthesised silver nanoparticles. J. Nanoparticle Res. 4: 325–335CrossRefGoogle Scholar
  3. Botti S., Celeste A., Coppola R. (1998) Particle size control and optical properties of laser-synthesized silicon nanopowders. Appl. Organomet. Chem. 12(5): 361–365CrossRefGoogle Scholar
  4. Boulaud D. (1993) Aerosol production by laser ablation. In: Marijnissen C.M., Pratsinis S.E. (eds) Synthesis and Measurement of Ultrafine Particles. Delft University Press, Delft, pp. 31–40Google Scholar
  5. Camata, R.P. (1998) Aerosol synthesis and characterization of silicon nanocrystals, Ph.D. Thesis, California Institute of Technology, Pasadena, CA.Google Scholar
  6. Camata R.P., Atwater H.A., Vahala K.J., Flagan R.C. (1996) Size classification of silicon nanocrystals. Appl. Phys. Lett. 68(22): 3162–3164CrossRefGoogle Scholar
  7. Chang H., Lenggoro I.W., Okuyama K., Kim T.O. (2004) Continuous single-step fabrication of nonaggregated, size-controlled and cubic nanocrystalline Y2O3:Eu3+ phosphors using flame spray pyrolysis. Jpn. J. Appl. Phys. Part 1 43(6A): 3535–3539CrossRefGoogle Scholar
  8. Chen D.R., Pui D.Y.H., Hummes D., Fissan H., Quant F.R., Sem G.J. (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (nano-DMA). J. Aerosol Sci. 29(5–6): 497–509CrossRefGoogle Scholar
  9. Chen J.H. & G.H. Lu, 2006. Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 17(12), 2891–2894Google Scholar
  10. Denbigh K. (1981) The Principles of Chemical Equilibrium 4th ed. Cambridge University Press, CambridgeGoogle Scholar
  11. Ding Z.F., Quinn B.M., Haram S.K., Pell L.E., Korgel B.A., Bard A.J. (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571): 1293–1297CrossRefGoogle Scholar
  12. Flagan R.C., Lunden M.M. (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng. A 204: 113–124CrossRefGoogle Scholar
  13. Flint J.H., Haggerty J.S. (1990) A model for the growth of silicon particles from laser-heated gases. Aerosol Sci. Technol. 13(1): 72–84Google Scholar
  14. Friedlander S.K. (1977) Smoke, dust, and haze: Fundamentals of aerosol behavior. Wiley, New YorkGoogle Scholar
  15. Fritzsche W., Taton T.A. (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14(12): R63-R73CrossRefGoogle Scholar
  16. Girshick S.L., Chu C.P., Muno R., Wu C.Y., Yang L., Singh S.K., McMurry P.H. (1993) Thermal plasma synthesis of ultrafine iron particles. J. Aerosol Sci. 24(3): 367–382CrossRefGoogle Scholar
  17. Holunga D.M., Flagan R.C., Atwater H.A. (2005) A scalable turbulent mixing aerosol reactor for oxide-coated silicon nanoparticles. Ind. Eng. Chem. Res. 44(16): 6332–6341CrossRefGoogle Scholar
  18. Jenkins R., Snyder R.L. (1996) Introduction to X-ray Powder Diffractometry. Wiley, New YorkGoogle Scholar
  19. Kennedy M.K., Kruis F.E., Fissan H. (2000) Gas phase synthesis of size selected SnO2 nanoparticles for gas sensor applications. Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2 343-3:949–954Google Scholar
  20. Kennedy M.K., Kruis F.E., Fissan H., Mehta B.R., Stappert S., Dumpich G. (2003) Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties. J. Appl. Phys. 93(1): 551–560CrossRefGoogle Scholar
  21. Lee D., Yang S.S., Choi M. (2001) Controlled formation of nanoparticles utilizing laser irradiation in a flame and their characteristics. Appl. Phys. Lett. 79(15): 2459–2461CrossRefGoogle Scholar
  22. Lide D.R. (1990–1991) CRC Handbook of Chemistry and Physics. 71st Ed. CRC Press, Boca Raton, pp. 5–70Google Scholar
  23. Lu Y., Liu G.L., Lee L.P. (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5(1): 5–9CrossRefGoogle Scholar
  24. Madler L., Roessler A., Pratsinis S.E., Sahm T., Gurlo A., Barsan N., Weimar U. (2006) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators B Chem. 114(1): 283–295CrossRefGoogle Scholar
  25. Mahoney W., Andres R.P. (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporator. Mater. Sci. Eng. A 204: 160–164CrossRefGoogle Scholar
  26. Makela J.M., Keskinen H., Forsblom T., Keskinen J. (2004) Generation of metal and metal oxide nanoparticles by liquid flame spray process. J. Mater. Sci. 39(8): 2783–2788CrossRefGoogle Scholar
  27. Mangolini L., Thimsen E., Kortshagen U. (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4): 655–659CrossRefGoogle Scholar
  28. Munz R.J., Addona T., da Cruz A.-C. (1999) Application of transferred arcs to the production of nanoparticles. Pure Appl. Chem. 71(10): 1889–1897Google Scholar
  29. Murray C.B., Norris D.J., Bawendi M.G. (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19): 8706–8715CrossRefGoogle Scholar
  30. Namiki N., Cho K., Fraundorf P., Biswas P. (2005) Tubular reactor synthesis of doped nanostructured titanium dioxide and its enhanced activation by coronas and soft X-rays. Ind. Eng. Chem. Res. 44(14): 5213–5220CrossRefGoogle Scholar
  31. Nichols W.T., Malyavanatham G., Henneke D.E., O’Brien D.T., Becker M.F., Keto J.W. (2002) Bimodal nanoparticle size distributions produced by laser ablation of microparticles in aerosols. J. Nanoparticle Res. 4(5): 423–432CrossRefGoogle Scholar
  32. Ostraat M.L., De Blauwe J.W., Green M.L., Bell L.D., Atwater H.A., Flagan R.C. (2001) Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices. J. Electrochem. Soc. 148(5): G265–G270CrossRefGoogle Scholar
  33. Ostraat M.L., De Blauwe J.W., Green M.L., Bell L.D., Brongersma M.L., Casperson J., Flagan R.C., Atwater H.A. (2001) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3): 433–435CrossRefGoogle Scholar
  34. Park K., Lee D., Rai A., Mukherjee D., Zachariah M.R. (2005) Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109(15): 7290–7299CrossRefGoogle Scholar
  35. Prakash A., McCormick A.V., Zachariah M.R. (2005) Tuning the reactivity of energetic nanoparticles by creation of a core–shell nanostructure. Nano Lett. 5(7): 1357–1360CrossRefGoogle Scholar
  36. Rao N., Girshick S., Heberlein J., McMurry P., Jones S., Hansen D., Micheel B. (1995) Nanoparticle formation using a plasma expansion process. Plasma Chem. Plasma Process. 15(4): 581–606CrossRefGoogle Scholar
  37. Rao N., Micheel B., Hansen D., Fandrey C., Bench M., Girshick S., Heberlein J., McMurry P. (1995) Synthesis of nanophase silicon, carbon, and silicon-carbide powders using a plasma expansion process. J. Mater. Res. 10(8): 2073–2084Google Scholar
  38. Sahm T., Madler L., Gurlo A., Barsan N., Pratsinis S.E., Weimar U. (2004) Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens. Actuators B Chem. 98(2–3): 148–153CrossRefGoogle Scholar
  39. Sankaran R.M., Holunga D., Flagan R.C., Giapis K.P. (2005) Synthesis of blue luminescent si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5(3): 537–541CrossRefGoogle Scholar
  40. Siegel R.W. (1993) Synthesis and properties of nanophase materials. Mater. Sci. Eng. A 168(2): 189–197CrossRefGoogle Scholar
  41. Wang S.C., Flagan R.C. (1990) Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13: 230–240Google Scholar
  42. Wang X., Hafiz J., Mukherjee R., Renault T., Heberlein J., Girshick S.L., McMurry P.H. (2005) System for in situ characterization of nanoparticles synthesized in a thermal plasma process. Plasma Chem. Plasma Process. 25(5): 439–453CrossRefGoogle Scholar
  43. Wiedensohler A. (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19(3): 387–389CrossRefGoogle Scholar
  44. Wiley B., Herricks T., Sun Y.G., Xia Y.N. (2004) Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4(9): 1739CrossRefGoogle Scholar
  45. Young R.M., Pfender E. (1985) Generation and behavior of fine particles in thermal plasmas—A review. Plasma Chem. Plasma Process. 5(1): 1–37CrossRefGoogle Scholar
  46. Yun C.M., Otani Y., Emi H. (1997) Development of unipolar ion generator-separation of ions in axial direction of flow. Aerosol Sci. Technol. 26: 389–397Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Junhong Chen
    • 1
  • Ganhua Lu
    • 1
  • Liying Zhu
    • 1
  • Richard C. Flagan
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations