Skip to main content
Log in

Study of InAs/GaAs quantum dots grown by MOVPE under the safer growth conditions

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

InAs quantum dots (QDs) have been formed on GaAs (001) substrate by metal-organic vapor phase epitaxy (MOVPE) under the safer growth conditions: using tertiarybutylarsine (TBA) to replace AsH3 as the arsenic source and replacing hydrogen by pure nitrogen as the carrier gas. Effects of growth conditions on the QD formation have been investigated. It is observed that the wetting layer is stabilized with some material being transferred to form the QDs due to the strain relaxation process during the QD formation. Dot size dispersion becomes broader when the post-growth interruption is more than 20 s. Compared with normal one-step grown QDs, dot density increases greatly by 213% after employing two-step deposition for QD growth. This is explained by considering the indium-flux-dependent nucleation density at step 1 and kinetically self-limiting growth at step 2. The two photoluminescence (PL) emission peaks, 1.203 μm and 1.094 μm, from the two-step grown QDs are attributed to E1–HH1 and E1–LH1 transitions of the QDs, respectively. The measured results agree well with those received by an 8 k·p theoretical calculation. The narrow PL linewidth of ~50 nm shows high quality of the QDs. This paves the way to develop safer MOVPE process, using TBA/N2 instead of AsH3/H2, to grow QDs for device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler F., Geiger M., Bauknecht A., Scholz F., Schweizer H., Pilkuhn M.H., Ohnesorge B., Forchel A., (1996). Optical transitions and carrier relaxation in self-assembled InAs/GaAs quantum dots. J. Appl. Phys. 80: 4019

    Article  CAS  Google Scholar 

  • Bo B.X., X.H. Tang, B.L. Zhang, G.S. Huang, Y.C. Zhang, T.S. Chuan, 2004. AlGaAs/GaAs Quantum Well Lasers Grown by Metalorganic Chemical Deposition Using Tertiarybutylarsine in Nitrogen Ambient. Jpn. J. Appl. Phys., Part 1. 43, 3410–3412

  • Cao H.J., Deng H., Ling H., Liu C., Smagley V.A., Caldwell R.B., Smolyakov G.A., Gray A.L., Lester L.F., Eliseev P.G., Osinski M., (2005). Highly unidirectional InAs/InGaAs/GaAs quantum-dot ring lasers. Appl. Phys. Lett. 86:2031171-1

    Google Scholar 

  • Cederberg J.G., Kaats F.H., Biefeld R.M., (2004). The impact of growth parameters on the formation of InAs quantum dots on GaAs(1 0 0) by MOCVD. J. Cryst. Growth 261: 197

    Article  CAS  Google Scholar 

  • Chichibu S., Iwai A., Matsumoto S., Higuchi H., (1992). Heavily Si-doped GaAs grown by low-pressure metalorganic chemical vapor deposition using tertiarybutylarsine and silane. Appl. Phys. Lett. 60: 489

    Article  CAS  Google Scholar 

  • Dauelsberg M., Hardtdegen H., Kadinski L., Kaluza A., Kaufmann P., (2001). Modeling and experimental verification of deposition behavior during AlGaAs growth: a comparison for the carrier gases N2 and H2. J. Cryst. Growth 223: 21

    Article  CAS  Google Scholar 

  • Fan W.J., Li M.F., Chong T.C., Xia J.B., (1996). Valence hole subbands and optical gain spectra of GaN/Ga1-xAlxN strained quantum wells. J. Appl. Phys. 80: 3471

    Article  CAS  Google Scholar 

  • Gershoni D., Henry C.H., Baraff G.A., (1993). Calculating the optical properties of multidimensional heterostructures: Application to the modeling of quaternary quantum well lasers. IEEE J. Quantum Electron 29: 2433

    Article  CAS  Google Scholar 

  • Gill K.S., Moskovitz N., Wang L.C., Sherwin M.S., Badolato A., Gerardot B., Petroff P., (2005). Controllable charge storage in quantum dots with independent tuning of electric fields. Appl. Phys. Lett. 87: 162101-1

    Article  Google Scholar 

  • Grundmann M., Christen J., Ledentsov N.N., Bohrer J., Bimberg D., Ruvimov S.S., Werner P., Richter U., Gosele U., Heydenreich J., Ustinov V.M., Egorov A.Y., Zhukov A.E., Kop’ev P.S., Alferov Z.I., (1995). Ultranarrow luminescence lines from single quantum dots. Phys. Rev. Lett. 74: 4043

    Article  CAS  Google Scholar 

  • Grundmann M., O. Stier, D. Bimberg, 1995-II. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981

    Google Scholar 

  • Huang G.S., Tang X.H., Zhang B.L., Tjin S.C., (2003). Arsenic incorporation into InGaAsP grown by low-pressure metalorganic vapor phase epitaxy using tertiarybutylarsine and tertiarybutylphosphine in N2 ambient. J. Appl. Phys. 94: 4890

    Article  CAS  Google Scholar 

  • Hsu C.C., Yang Y.F., Ou H.J., Yang E.S., Lo H.B., (1997). Carbon-doped GaInP/GaAs heterojunction bipolar transistors grown by metalorganic chemical vapor deposition using nitrogen as the carrier gas. Appl. Phys. Lett. 71: 3248

    Article  CAS  Google Scholar 

  • Illing M., Bacher G., T. Ku mmell, Forchel A., Andersson T.G., D. Hommel, Jobst B., Landwehr G., (1995). Lateral quantization effects in lithographically defined CdZnSe/ZnSe quantum dots and quantum wires. Appl. Phys. Lett. 67: 124

    Article  CAS  Google Scholar 

  • Jiang H.T., Singh J., (1997). Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: an eight-band study. Phys. Rev. B 56: 4696

    Article  CAS  Google Scholar 

  • Johansson J., Seifert W., (2002). Kinetics of self-assembled island formation. I. Island density. J. Cryst. Growth 234: 132

    Article  CAS  Google Scholar 

  • Kastner M., Voigtlander B., (1999). Kinetically self-limiting growth of Ge islands on Si(001) Phys. Rev. Lett. 82: 2745

    Article  CAS  Google Scholar 

  • Liu F.Q., Wang Z.G., Wu J., Xu B., Gong Q., Liang J.B., (1999). Structure and photoluminescence of InGaAs self-assembled quantum dots grown on InP(001). J. Appl. Phys. 85: 619

    Article  CAS  Google Scholar 

  • Maeda, Y., 1995. Phys. Rev. B 51, 1658–1670

    Google Scholar 

  • Marzin J.Y., Gerard J.M., Izrael A., Barrier D., Bastard G., (1994). Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73: 716

    Article  CAS  Google Scholar 

  • Ngo T.T., Petroff P.M., Sakaki H., Merz J.L., (1996). Simulation model for self-ordering of strained islands in molecular-beam epitaxy. Phys. Rev. B 53: 9618

    Article  CAS  Google Scholar 

  • Nishi K., Saito H., Sugou S., Lee J.S., (1999). A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl. Phys. Lett. 74: 1111

    Article  CAS  Google Scholar 

  • Ross F.M., Tersoff J., Tromp R.M., (1998). Coarsening of self-assembled Ge quantum dots on Si(001). Phys. Rev. Lett. 80: 984

    Article  CAS  Google Scholar 

  • Saxena S.C., Saxena V.K., (1970). Thermal conductivity data for hydrogen and deuterium in the range 100–1100°C. J. Phys. A: Gen. Phys. 3: 309

    Article  CAS  Google Scholar 

  • Schmidt K.H., Medeiros-Ribeiro G., Garcia J., Petroff P.M., (1997). Size quantization effects in InAs self-assembled quantum dots. Appl. Phys. Lett. 70: 1727

    Article  CAS  Google Scholar 

  • Sellin R.L., Kaiander I., Ouyang D., Kettler T., Pohl U.W., Bimberg D., Zakharov N.D., Werner P., (2003). Alternative-precursor metalorganic chemical vapor deposition of self-organized InGaAs/GaAs quantum dots and quantum-dot lasers. Appl. Phys. Lett. 82: 841

    Article  CAS  Google Scholar 

  • Serreze H.B., Baumann J.A., Bunz L., Schachter R., Esman R.D., (1989). GaAs p-i-n photodiodes made by metalorganic chemical vapor deposition using tertiarybutylarsine and arsine. Appl. Phys. Lett. 55: 2532

    Article  CAS  Google Scholar 

  • Shchukin V.A., Bimberg D., (1999). Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71: 1125

    Article  CAS  Google Scholar 

  • Tang X.H., Yin Z.Y., Zhao J.H., Deny S., (2006). A new method of two-step growth of InAs/GaAs quantum dots with higher density and more size uniformity. Nanotechnol. 17: 295

    Article  CAS  Google Scholar 

  • Tatebayashi J., Nishioka M., Arakawa Y., (2001). Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 78: 3469

    Article  CAS  Google Scholar 

  • Vurgaftman I., Meyer J.R., Ram-Mohan L.R., (2001). Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89: 5815

    Article  CAS  Google Scholar 

  • Xia J.B. Fan W.J., (1989). Electronic structures of superlattices under in-plane magnetic field. Phys. Rev. B 40: 8508

    Article  Google Scholar 

  • Yin Z.Y., Tang X.H., Zhao J.H., Deny S., (2006). Effects of growth conditions on InAs quantum dot formation by metalorganic chemical vapor deposition using tertiarybutylarsine in pure N2 ambient. J. Appl. Phys. 99: 124306

    Article  Google Scholar 

  • Zhang W., Lim H., Taguchi M., Tsao S., Movaghar B., Razeghi M., (2005). High-detectivity InAs quantum-dot infrared photodetectors grown on InP by metal-organic chemical-vapor deposition. Appl. Phys. Lett. 86: 1911031-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Z., Tang, X., Liu, W. et al. Study of InAs/GaAs quantum dots grown by MOVPE under the safer growth conditions. J Nanopart Res 9, 877–884 (2007). https://doi.org/10.1007/s11051-006-9161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9161-y

Keywords

Navigation