Journal of Nanoparticle Research

, Volume 9, Issue 1, pp 109–115 | Cite as

Modeling of filtration efficiency of nanoparticles in standard filter media

  • J. WangEmail author
  • D.R. Chen
  • D.Y.H. Pui
Special issue occupational safety


The goal of this study is to model the data from the experiments of nanoparticle filtration performed at the Particle Technology Lab, University of Minnesota and at the 3M Company. Comparison shows that the experimental data for filter efficiency are bounded by the values computed from theoretical expressions which do not consider thermal rebound. Therefore thermal rebound in the tested filter media is not detected down to 3 nm particles in the present analysis. The efficiency measured experimentally is in good agreement with the theoretical expression by Stechkina (1966, Dokl. Acad. Nauk SSSR 167, 1327) when the Pectlet number Pe is larger than 100; it agrees well with the theoretical expression by Kirsch and Stechkina (1978, Fundamentals of Aerosol Science. Wiley, New York) when Pe is of the order of unit. We develop an empirical power law model for the efficiency depending on the Peclet number, which leads to satisfactory agreement with experimental results.


filtration efficiency modeling nanoparticle penetration standard filter media occupational health 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the support of members of the Center for Filtration Research: 3M, Donaldson, Fleetguard, Samsung Digital Appliance, Samsung Semiconductor, TSI, and W. L. Gore & Associates. We also thank Prof. Sheldon K. Friedlander for valuable discussions.


  1. Alonso M., Kousaka Y., Hashimoto T., Hashimoto N., (1997). Penetration of nanometer-sized aerosol particles through wire screen and laminar flow tube. Aerosol Sci. Technol. 27: 471–480Google Scholar
  2. Balazy A., A. Podgorski & L. Gradon, 2004. Filtration of nanosized aerosol particles in fibrous filters. I – experimental results. J. Aerosol Sci. EAC Proceedings Vol. II, S967–S980Google Scholar
  3. Friedlander S.K., (1957). Mass and heat transfer to single spheres and cylinders at low Reynolds numbers. AIChE J. 3: 43–48CrossRefGoogle Scholar
  4. Friedlander S.K., (1958). Theory of aerosol filtration. Ind. Eng. Chem. 50:1161–1164CrossRefGoogle Scholar
  5. Friedlander S.K., (1967). Particle diffusion in low speed flows. J. Colloid Interface Sci. 23:157–164CrossRefGoogle Scholar
  6. Friedlander S.K., 2000. Smoke, Dust, and Haze, 2nd edn. Oxford University PressGoogle Scholar
  7. Fuchs N.A., Stechkina I.B., (1963). A note on the theory of fibrous aerosol filters. Ann. Occup. Hyg. 6:27–30Google Scholar
  8. Heim M., Mullins B., Wild M., Meyer J., Kasper G., (2005). Filtration efficiency of aerosol particles below 20 Nanometers. Aerosol Sci. Technol. 39:782–789Google Scholar
  9. Hinds W.C., 1998. Aerosol technology, 2nd edn. Wiley-interscienceGoogle Scholar
  10. Ichitsubo H., Hashimoto T., Alonso M., Kousaka Y., (1996). Penetration of ultrafine particles and ion clusters through wire screens. Aerosol Sci. Technol. 24:119–127Google Scholar
  11. Japuntich D., L. Franklin, D.Y.H. Pui, T. Kuehn & S.C. Kim, 2006. Air filtration testing using the TSI 8160 automated filter tester for solid and liquid aerosols of 15 to 400 nm diameter. J. Nanoparticle Research, Special Issue: Nanotechnology and occupational healthGoogle Scholar
  12. Kim J.H., Mulholland G.W., Kukuck S.R., Pui D.Y.H., (2005). Slip correction measurement of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110: 31–54Google Scholar
  13. Kim S.C., M. Harrington & D.Y.H. Pui, 2006. Filter collection efficiency for nanoscale particles. J. Nanoparticle Research, Special Issue: Nanotechnology and occupational healthGoogle Scholar
  14. Kirsch A.A., Stechkina I.B., (1978). The theory of aerosol filtration with fibrous filters. In: Shaw D.T. (eds) Fundamentals of Aerosol Science. Wiley, New YorkGoogle Scholar
  15. Kirsh V.A. (2003). Deposition of aerosol nanoparticles in fibrous filters. Colloid J. 65:726–732. Translated from Kolloidnyi Zhurnal, 65, 795–801CrossRefGoogle Scholar
  16. Lee K.W., Liu B.Y.H., (1982). Theoretical study of aerosol filtration in fibrous filters. Aerosol Sci. Technol. 1:147–161Google Scholar
  17. Maynard A.D., Kuempel E.D., (2005) Airborne Nanostructured Particles and Occupational Health. J. Nanoparticle Res. 7:587–614CrossRefGoogle Scholar
  18. Natason G.L. (1957). Diffusional precipitation of aerosols on a streamlined cylinder with a small capture coefficient. Proc. Acad. Sci. USSR, Phys. Chem. Sec. 112:21–25; Dokl. Akad. Nauk, SSSR 112:100Google Scholar
  19. Oberdörster G., Oberdörster E., Oberdörster J., (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113:823–839CrossRefGoogle Scholar
  20. Pich J. (1965). The filtration theory of highly dispersed aerosols. Staub Reinhalt. Luft. 5:16–23Google Scholar
  21. Stechkina I.B. (1966). Diffusion precipitation of aerosols in fiber filters. Dokl. Acad. Nauk SSSR 167: 1327Google Scholar
  22. Wang H.C., Kasper G. (1991). Filtration efficiency of nanometer-size aerosol particles. J. Aerosol Sci. 22:31–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of␣Mechanical EngineeringWashington University at St. LouisSt. LouisUSA

Personalised recommendations