Journal of Nanoparticle Research

, Volume 9, Issue 1, pp 61–69 | Cite as

Calibration and numerical simulation of Nanoparticle Surface Area Monitor (TSI Model 3550 NSAM)

  • W. G> Shin
  • D. Y. H. Pui
  • H. Fissan
  • S. Neumann
  • A. Trampe
Special focus: Nanoparticles and occupational health


TSI Nanoparticle Surface Area Monitor (NSAM) Model 3550 has been developed to measure the nanoparticle surface area deposited in different regions of the human lung. It makes use of an adjustable ion trap voltage to match the total surface area of particles, which are below 100 nm, deposited in tracheobronchial (TB) or alveolar (A) regions of the human lung. In this paper, calibration factors of NSAM were experimentally determined for particles of different materials. Tests were performed using monodisperse (Ag agglomerates and NaCl, 7–100 nm) and polydisperse particles (Ag agglomerates, number count mean diameter below 50 nm). Experimental data show that the currents in NSAM have a linear relation with a function of the total deposited nanoparticle surface area for the different compartments of the lung. No significant dependency of the calibration factors on particle materials and morphology was observed. Monodisperse nanoparticles in the size range where the response function is in the desirable range can be used for calibration. Calibration factors of monodisperse and polydisperse Ag particle agglomerates are in good agreement with each other, which indicates that polydisperse nanoparticles can be used to determine calibration factors. Using a CFD computer code (Fluent) numerical simulations of fluid flow and particle trajectories inside NSAM were performed to estimate response function of NSAM for different ion trap voltages. The numerical simulation results agreed well with experimental results.


nanoparticle surface area deposition in compartments of human lung tracheobronchial alveolar instrumentation, occupational health 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltensperger U., Gäggeler H.W., Jost D.T. (1988). The epiphaniometer, a new device for continuous aerosol monitoring. J. Aerosol Sci. 19(7):931–934CrossRefGoogle Scholar
  2. Brunauer S., Emmett P.H., Teller E. (1938). Adsorption of gases in multimolecular layers. J. Am Chem. Soc. 60:309–319CrossRefGoogle Scholar
  3. Donaldson K., Li X.Y., MacNee W. (1998). Ultrafine (nanometer) particle mediated lung injury. J. Aerosol Sci. 29(5–6):553–560CrossRefGoogle Scholar
  4. Fissan H. & T. Kuhlbusch, 2005. Strategies and instrumentation for nanoparticle exposure control in air at workplaces. 2nd International symposium on nanotechnology and occupational health, Minneapolis, USA, October 3–6, 2005Google Scholar
  5. Fissan H., A. Trampe, S. Neunman, D.Y.H Pui & W.G. Shin, 2006. Rationale and principle of an instrument measuring lung deposition area. J. Nanoparticle Research (this issue)Google Scholar
  6. Han H.S., Chen D.R., Anderson B.E., Pui D.Y.H. (2000). A nanometer aerosol size analyzer (nASA) for rapid measurement of high concentration size distributions. J. Nanoparticle Res. 2:43–52CrossRefGoogle Scholar
  7. Heyder J., Gebhart J., Rudolf G., Schillerd C.F., Stahlhofen W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005–15μm. J. Aerosol Sci. 17:811–825CrossRefGoogle Scholar
  8. ICRP. (1994). International Commission on Radiological Protection Publication 66 Human Respiratory Tract Model for Radiological Protection. Oxford, Pergamon, Elsevier Science LtdGoogle Scholar
  9. James A.C., M.R. Bailey & M-D. Dorrian, 2000. LUDEP Software, Version 2.07: Program for implementing ICRP-66 Respiratory tract model. RPB, Chilton, Didcot, OXON. OX11 ORQ UKGoogle Scholar
  10. Jung H.J., Kittelson D.B. (2005). Characterization of aerosol surface instruments in transition regime. Aerosol Sci. Tech. 39(9):902–911CrossRefGoogle Scholar
  11. Kaufman S.L., A. Medved, A. Pöcher, N. Hill, R. Caldow & F.R. Quant, 2002. An electrical aerosol detector based on the corona-jet charger. AAAR conference (poster)Google Scholar
  12. Ku B.K., Maynard A.D. (2005). Generation and investigation of airborne Ag nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aerosol Sci. 36(9):1108–1124CrossRefGoogle Scholar
  13. Liu B.Y.H., Pui D.Y.H. (1977). On unipolar diffusion charging of aerosols in the continuum regime. J. Colloid Interface Sci. 58:142–149CrossRefGoogle Scholar
  14. Maynard A.D., Kuempel E.D. (2005). Airborne nanostructured particles and occupational health. J. Nanoparticle Res. 7(6):587–614CrossRefGoogle Scholar
  15. Maynard A.D., 2003. Estimating aerosol surface area from number and mass concentration measurements. Ann. Occup. Hygiene 47, 123–144Google Scholar
  16. Medved A., Dorman F., Kaufman S.L., Pöcher A. (2000). A new corona-based charger for aerosol particles. J. Aerosol Sci. 31(S.1):616–617CrossRefGoogle Scholar
  17. Oberdorster G., Gelein R.M., Ferin J., Weiss B. (1995). Association of particulate air pollution and acute mortality: involvement of ultrafine particles. Inhal. Toxicol. 7:111–124Google Scholar
  18. Oberdorster G. (1996). Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Particulate Sci. Technol. 14(2):135–151Google Scholar
  19. Oberdörster G., Oberdörster E., Oberdörster J. (2005). Invited review: Nanotechnology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839CrossRefGoogle Scholar
  20. Shi J.P., Harrison R.M., Evans D. (2001). Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS. Atmospheric Environment 35 (35):6193–6200CrossRefGoogle Scholar
  21. Tang I.N., Munkelwitz H.R., Davis J.G. (1977). Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols. J. Aerosol Sci. 8(3):149–159CrossRefGoogle Scholar
  22. Wilson W.E., H.-S. Han, J. Stanek, J. Turner & D.Y.H. Pui, 2003. The Fuchs surface area measured by charge acceptance of atmospheric particles may be a useful indicator of the quantity of particle surface area deposited in the lung. Abstracts of the European aerosol conference. S421-S422. Madrid, SpainGoogle Scholar
  23. Wilson W.E., H.-S. Han, J. Stanek, J. Turner, D.-R. Chen & D.Y.H. Pui, 2004. Use of electrical aerosol detector as an indicator for the total particle surface area deposited in the lung. Symp. On air quality measurement methods and technology sponsored by air and waste management association. Research triangle park, NC. Paper #37.Google Scholar
  24. Woo K.-S., Chen D.-R., Pui D.Y.H., Wilson W.E. (2001). Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci. Tech. 34:57–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • W. G> Shin
    • 1
  • D. Y. H. Pui
    • 1
  • H. Fissan
    • 2
  • S. Neumann
    • 2
  • A. Trampe
    • 2
  1. 1.Mechanical Engineering DepartmentUniversity of MinnesotaMinneapolisUSA
  2. 2.University of Duisburg-EssenDuisburgGermany

Personalised recommendations