Skip to main content
Log in

Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Addition of fullerenes (C60 or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (∼50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate – polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (∼29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley K.M., Meredith J.C., Amis E., Raghavan D., Karim A., (2003) Combinatorial investigation of dewetting: Polystyrene thin films on gradient hydrophilic surfaces. Polymer 44:769–772

    Article  CAS  Google Scholar 

  • Barnes K., Karim A., Douglas J., Nakatani A., Gruell H., Amis E. (2000) Suppression of dewetting in nanoparticle-filled polymer films. Macromolecules 33: 4177–4185

    Article  CAS  Google Scholar 

  • Barnes K.A., Douglas J.F., Liu D.W., Karim A. (2001) Influence of nanoparticles and polymer branching on the dewetting of polymer films. Adv. Coll. Inter. Sci. 94: 83–104

    Article  CAS  Google Scholar 

  • Besancon B.M., Green P.F. (2005) Polystyrene-based single-walled carbon nanotube nanocomposite thin films: Dynamics of structural instabilities. Macromolecules 38: 110–115

    Article  CAS  Google Scholar 

  • Bird R.B., Stewart W.E., Lightfoot E.N. (1960) Transport Phenomena. J. Wiley, New York

    Google Scholar 

  • Brandrup J., Immergut E.H. (1989) Polymer Handbook. John Wiley & Sons, New York

    Google Scholar 

  • Bucknall D.G. (1999) Neutron reflection studies of polymers. In: Pethrick R.A., Dawkins J.V. (eds) Moder Techniques for Polymer Characterisation. Wiley, New York, pp 109–140

    Google Scholar 

  • Carre A., Shanahan M.E.R. (1997) Effect of cross-linking on the dewetting of an elastomeric surface. J. Coll. Inter. Sci. 191:141–145

    Article  CAS  Google Scholar 

  • Feng Y., Karim A., Weiss R., Douglas J., Han C. (1998) Control of polystyrene felm dewetting through sulfonation and metal complexation. Macromolecules 31: 484–493

    Article  CAS  Google Scholar 

  • Fox T.G., Flory P.J. (1948) Viscosity–molecular weight and viscosity–temperature relationships for polystyrene and polyisobutylene. J. Am. Chem. Soc. 70: 2384–2395

    Article  CAS  Google Scholar 

  • Gandhi K.S., Williams M.C. (1971) Solvent effects on the viscosity of moderately concentrated polymer solutions. J. Polymer Sci.: Part C 35: 211–234

    Article  Google Scholar 

  • Grate J.W., McGill R.A. (1995) Dewetting effects on polymer-coated surface acoustic wave vapor sensors. Anal. Chem. 67: 4015–4019

    Article  CAS  Google Scholar 

  • Jacobs K., Herminghaus S., Mecke K.R. (1998) Thin liquid polymer films rupture via defects. Langmuir 14: 965–969

    Article  CAS  Google Scholar 

  • Karapanagiotis I., Evans D.F., Gerberich W.W. (2001) Nucleation processes for dewetting initiation of thin polymer films. Langmuir 17: 3266–3272

    Article  CAS  Google Scholar 

  • Kazmerski L.L. (1980) Polycrystalline and Amorphous thin Films and Devices. Academic Press, New York

    Google Scholar 

  • Krishnan R.S., Mackay M.E., Hawker C.J., Van Horn B. (2005) Influence of molecular architecture on the dewetting of thin polystyrene films. Langmuir 21: 5770–5776

    Article  CAS  Google Scholar 

  • Lee S.H., Yoo P.J., Kwon S.J., Lee H.H. (2004) Solvent-driven dewetting and rim instability. J. Chem. Phys. 121:4346–4351

    Article  CAS  Google Scholar 

  • Licari J.J. (1970) Plastic Coatings for Electronics. McGraw-Hill, New York

    Google Scholar 

  • Luo H.B., Gersappe D. (2004) Dewetting dynamics of nanofilled polymer thin films. Macromolecules 37: 5792–5799

    Article  CAS  Google Scholar 

  • Mackay M.E., Dao T.T., Tuteja A., Ho D.L., VanHorn B., Kim H.-C., Hawker C.J. (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2: 762–766

    Article  CAS  Google Scholar 

  • Mackay M.E., Hong Y., Hong S., Russell T.P., Hawker C.J., Vestberg R., Douglas J. (2002) The influence of dendrimers on the dewetting of thin polystyrene films. Langmuir 18: 1877–1882

    Article  CAS  Google Scholar 

  • Masson J.L., Green P.F. (2002) Hole formation in thin polymer films: A two-stage process. Phys. Rev. Lett. 88:205504

    Article  CAS  Google Scholar 

  • McCabe W., Smith J., Herriott P. (1993) Unit Operations of Chemical Engineering. McGraw-Hill, New York

    Google Scholar 

  • Muller-Buschbaum P. (2003) Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J. Phys.: Condens. Matter 15: R1549–R1582

    Article  Google Scholar 

  • Ober R., Paz L., Taupin C., Pincus P., Boileau S. (1983) Study of the surface tension of polymer solutions: Theory and Experiments. 1. Good solvent conditions. Macromolecules 16: 50–55

    Article  CAS  Google Scholar 

  • Rauch J., Kohler W. (2003) Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene. J. Chem. Phys. 119: 11977–11988

    Article  CAS  Google Scholar 

  • Redon C., Brochard-Wyart F., Rondelez F. (1991) Dynamics of dewetting. Phys. Rev. Lett. 66: 715–718

    Article  CAS  Google Scholar 

  • Reiter G. (1992) Dewetting of thin polymer films. Phys. Rev. Lett. 68: 75–78

    Article  CAS  Google Scholar 

  • Reiter G. (1993) Unstable thin polymer-films – rupture and dewetting processes. Langmuir 9: 1344–1351

    Article  CAS  Google Scholar 

  • Reiter G., Sharma A., Casoli A., David M.O., Khanna R., Auroy P. (1999) Thin film instability induced by long-range forces. Langmuir 15: 2551–2558

    Article  CAS  Google Scholar 

  • Royer J.R., Gay Y.J., Desimone J.M., Khan S.A. (2000) High-pressure rheology of polystyrene melts plasticized with CO2: Experimental measurement and predictive scaling relationships. J. Poly. Sci. Part B-Poly. Phys. 38: 3168–3180

    Article  CAS  Google Scholar 

  • Seemann R., Herminghaus S., Jacobs K. (2001a) Dewetting patterns and molecular forces: A reconcilliation. Phys. Rev. Lett. 86: 5534–5537

    Article  CAS  Google Scholar 

  • Seemann R., Herminghaus S., Jacobs K. (2001b) Gaining control of pattern formation of dewetting liquid films. J. Phys.-Cond. Mat. 13: 4925–4938

    Article  CAS  Google Scholar 

  • Sharma S., Rafailovich M., Peiffer D., Sokolov J. (2001) Control of dewetting dynamics by adding nanoparticle fillers. Nano Lett. 1: 511–514

    Article  CAS  Google Scholar 

  • Stange T.G., Evans D.F., Hendrickson W.A. (1997) Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13: 4459–4465

    Article  CAS  Google Scholar 

  • Voronov A., Shafranska O. (2002) Synthesis of chemically grafted polystyrene “brushes” and their influence on the dewetting in thin polystyrene films. Langmuir 18: 4471–4477

    Article  CAS  Google Scholar 

  • Voronov A., Shafranska O. (2003) Dependence of thin polystyrene films stability on the thickness of grafted polystyrene brushes. Polymer 44: 277–281

    Article  CAS  Google Scholar 

  • Wiedersich J., Surovtsev N.V., Rossler E. (2000) A comprehensive light scattering study of the glass former toluene. J. Chem. Phys. 113: 1143–1153

    Article  CAS  Google Scholar 

  • Xie R., Karim A., Douglas J.F., Han C.C., Weiss R.A. (1998) Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81: 1251–1254

    Article  CAS  Google Scholar 

  • Yerushalmirozen R., Klein J., Fetters L.J. (1994) Suppression of Rupture in Thin, Nonwetting Liquid-Films. Science 263: 793–795

    Article  CAS  Google Scholar 

  • Zhao H.P., Wang Y.J., Tsui O.K.C. (2005) Dewetting induced by complete versus nonretarded van der Waals forces. Langmuir 21: 5817–5824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Doug Adkins, Jim Spates, Daniel Barfoot, Joy Byrnes and Dave Wheeler, as well as the others working on the development of the μChemLabTM at Sandia National Laboratories for their help and support. In addition, financial support from Sandia National Laboratories is greatly appreciated. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. We would also like to thank the people at the Intense Pulsed Neutron Source at Argonne National Laboratory for the ability to perform neutron reflectivity measurements. This facility is funded by the U.S. Department of Energy, BES-Materials Science, under contract W-31-109-ENG-38 to the University of Chicago. We also wish to thank Rick Goyette for his assistance with the reflectivity experiments and Dr. Pappannan Thiyagarajan for his aid in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Mackay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, M.A., Mackay, M.E. & Giunta, R.K. Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors. J Nanopart Res 9, 753–763 (2007). https://doi.org/10.1007/s11051-006-9118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9118-1

Key words:

Navigation