Skip to main content
Log in

Particle size effect on magnetotransport properties of nanocrystalline Nd0.7Sr0.3MnO3

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystalline samples with an average particle size of 40 and 52 nm have been synthesized by citrate-complex auto-ignition method. Magnetic properties of the samples show para- to ferromagnetic transition at around 135 K. The electron magnetic resonance (EMR) study on these samples indicates the presence of coexistence of two magnetic phases below 290 K. Electrical resistivity follows variable range hopping (VRH) mechanism in the paramagnetic regime. The magnetoresistance (MR) data has been analysed by spin dependent hopping between the localized spin clusters together with the phase-separation phenomenon. These clusters are assumed to be formed by distribution of canted spins and defects all over the nanoparticle. In addition, the hopping barrier depends on the magnetic moment orientation of the clusters. The magnetic moments of the clusters are narrowly oriented in ferro- and are randomly oriented in paramagnetic phase. The ferromagnetic phase contributes to the total MR at low applied magnetic fields whereas the paramagnetic phase contributes at relatively high fields in both the samples. The average cluster size in ferromagnetic phase is bigger than that in paramagnetic phase. It is also observed that the cluster size, in ferromagnetic phase, in 52 nm sample is bigger than that in the 40 nm sample. However, the average cluster size in paramagnetic phase is almost same in both the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles B., Sheng P., Coutts M.D. and Arie Y. (1975) Adv. Phys. 24:407–461

    Article  CAS  Google Scholar 

  • Adams C.P., Lynn J.W., Mukovskii Y.M., Arsenov A.A. and Shulyatev D.A. (2000) Phys. Rev. Lett. 85:3957

    Article  Google Scholar 

  • Angappane S., Rangarajan G. and Sethupathi K. (2003) J. Appl. Phys. 93:8334–8336

    Article  CAS  Google Scholar 

  • Balcells Ll., Fontcuberta J., Martinez B. and Obradors X. (1998) Phys. Rev. B 58:R14697–R14700

    Article  CAS  Google Scholar 

  • Berkowitz A.E., Schuele W.J. and Flanders P.J. (1968) J. Appl. Phys. 39:1261–1263

    Article  CAS  Google Scholar 

  • Cai J.W., Wang C., Shen B.G., Zhao J.G. and Zhan W.S. (1997) Appl. Phys. Lett. 71:1727

    Article  CAS  Google Scholar 

  • Chechersky V., Nath A., Isaac I. and Franck J.P. (1999) Phys. Rev. B 59:497–502

    Article  CAS  Google Scholar 

  • Chen S.F., Lin P.I., Juan J.Y., Uen T.M., Wu K.H., Gou Y.S. and Lin J.Y. (2003) Appl. Phys. Lett. 82:1242–1244

    Article  CAS  Google Scholar 

  • Coey J.M.D. (1971) Phys. Rev. Lett. 27:1140–1142

    Article  CAS  Google Scholar 

  • Coey J.M.D., Viret M., Ranno L. and Ounadjela K. (1995) Phys. Rev. Lett. 75:3910–3913

    Article  CAS  Google Scholar 

  • Cohn J.L., M. Peterca & J.J. Neumeier, 2004. Phys. Rev. B 70, 214433-1–214433-6

    Google Scholar 

  • Dagotto E (2003) Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds. Springer-Verlag, Berlin

    Google Scholar 

  • De Teresa J.M., Ritter C., Ibarra M.R., Algarabel P.A., García-Muňoz J.L., Blasco J., García J. and Marquina C. (1997) Phys. Rev. B 56:3317–3324

    Article  Google Scholar 

  • Dutta A., N. Gayathri & R. Ranganathan, 2003. Phys. Rev. B 68, 54432-1–054432-8

    Google Scholar 

  • Evetts J.E., Blamire M.G., Mathur N.D., Isaac S.P., Teo B.S., Cohen L.F. and Macmanus-Driscoll J.L. (1998) Phil. Trans. R. Soc. Lond. A 356:1593–1613

    Article  CAS  Google Scholar 

  • Fan J., L. Pi, W. Tong, S. Xu, J. Gao, C. Zha & Y. Zhang, 2003. Phys. Rev. B 68, 092407-1–092407-4

    Google Scholar 

  • Feng J.W. and Hwang L.P. (1999) Appl. Phys. Lett. 75:1592–1594

    Article  CAS  Google Scholar 

  • Gupta A., Gong G.Q., Xiao G., Lecoeur P.R., Trouilloud, P. Wang Y.Y., Dravid V.P. and Sun J.Z. (1996) Phys. Rev. B 54:R15629–R15632

    Article  CAS  Google Scholar 

  • Helman J.S and Abeles B. (1976) Phys. Rev. Lett. 37:1429–1432

    Article  CAS  Google Scholar 

  • Hwang H.Y., Cheong S.W., Ong N.P. and Batlogg B. (1996) Phys. Rev. Lett. 77:2041–2044

    Article  CAS  Google Scholar 

  • Kasuya T. and Yanase A. (1968) Rev. Mod. Phys. 40:684–696

    Article  CAS  Google Scholar 

  • Kraus W. and Nolze G. (1996) J. Appl. Cryst. 29:301–303

    Article  CAS  Google Scholar 

  • Krishnamoorthy C., K. Sethupathi, V. Sankaranarayanan, R.␣Nirmala & S.K. Malik unpublished

  • López-Quintela M.A., Hueso L.E., Rivas J. and Rivadulla F. (2003) Nanotechnology 14:212–219

    Article  Google Scholar 

  • Mayr M., Moreo A., Vergés J.A., Arispe J., Feiguin A. and Dagotto E. (2001) Phys. Rev. Lett. 86:135–138

    Article  CAS  Google Scholar 

  • Milligan W.O. and J.T. Richardson, 1955 J. Phys. Chem. 59, 831–833; J.T. Richardson and W.O. Milligan, 1956 Phys. Rev. 102, 1289–1294

    Google Scholar 

  • Moreo A., Mayr M., Feiguin A., Yunoki S. and Dogatto E. (2000) Phys. Rev. Lett. 84:5568–5571

    Article  CAS  Google Scholar 

  • Morrish A.H. & K. Haneda, 1980, J. Magn. Magn. Mater. 15–18, 1089–1090

  • Mott N.F. & E.A. Davis, “ Electronic processes in non-crystalline materials” 1971 Clarendon Press, Oxford; Mott N.F., 1972, Adv. Phys. 21, 785

  • Muroi M., Street R. and McCormick P.G. (2000) J. Appl. Phys. 87:3424–3431

    Article  CAS  Google Scholar 

  • Néel L. (1962) J. Phys. Soc. Jpn 17(Suppl. B-I):676–685

    Google Scholar 

  • Neugebauer C.A. and Webb M.B. (1962) J. Appl. Phys. 33:74–82

    Article  CAS  Google Scholar 

  • Pankhurst Q.A. and Pollard R.J. (1991) Phys. Rev. Lett. 67:248–250

    Article  CAS  Google Scholar 

  • Parker F.T., Foster M.W., Margulies D.T. and Berkowitz A.E. (1993) Phys. Rev. B 47:7885–7891

    Article  CAS  Google Scholar 

  • Pattabiraman M., P. Murugaraj, G. Rangarajan, C. Dimitropoulos, J.-Ph. Ansermet, G. Papavassiliou, G. Balakrishnan, Mc K. Paul & M.R. Lees, 2002. Phys. Rev. B 66, 224415-1–224415-7

  • Richardson J.T., Yiagas D.I., Turk B., Forster K. and Twigg M.V. (1991) J. Appl. Phys. 70:6977–6982

    Article  CAS  Google Scholar 

  • Sharma N., Venkataramani N., Prasad S., Chandra G. and Pai S.P. (1997) J. Magn. Magn. Matter. 166:65–70

    Article  CAS  Google Scholar 

  • Song W., F. Luo, Y.-H. Huang, C.-H. Yan, B.-Z. Sun & L.-L. He (2004) J. Appl. Phys. 96, 2731–2735

    Google Scholar 

  • Sun B.Z., He L.L., Luo F. and Yan C.H. (2005) Phys. Stat. Sol. 202:1883–1890

    Article  CAS  Google Scholar 

  • Uehara M., Mori S., Chen C.H. and Cheong S.-W. (1999) Nature 399:560–562

    Article  CAS  Google Scholar 

  • Viret M., Rano L. and Coey J.M.D. (1997) Phys. Rev. B 55:8067–8070

    Article  CAS  Google Scholar 

  • Wang Z.H., Cai J.W., Shen B.G., Chen X. and Zhan W.S. (2000) J. Phys.: Condens. Matter 12:601–610

    Article  CAS  Google Scholar 

  • Wagner P., Gordon I., Trappeniers L., Vanacken J., Herlach F., Moshchalkov V.V. and Bruynseraede Y. (1998) Phys. Rev. Lett. 81:3980–3983

    Article  CAS  Google Scholar 

  • Wu J., J.M. Lynn, C.J. Glinka, J. Berley, H. Zheng, J.F.␣Mitchell & C.Leighton, 2005 Phys. Rev. Lett. 94, 037201-1–037201-4

    Google Scholar 

  • Xiao J.Q., Jiang J.S., Chein C.L. (1992) Phys. Rev. Lett. 68:3749–3752

    Article  CAS  Google Scholar 

  • Xiong G.C., Li Q., Ju H.L., Mao S.N., Senapati L., Xi X.X., Greene R.L. and Venkatesan T. (1995) Appl. Phys. Lett. 66:1427–1429

    Article  CAS  Google Scholar 

  • Yuan S.L., Li Z.Y., Peng G., Yang Y.P., Tu F., Zhang G.Q., Liu J., Zen X.Y., Xiong C.S., Xiong W.H. and Tang C.Q. (2001) J. Phys.: Condens. Matter 13:L509–L514

    Article  CAS  Google Scholar 

  • Zhang N., Ding W., Zhong W., Xing D. and Du Y. (1997) Phys. Rev. B 56:8138–8142

    Article  CAS  Google Scholar 

  • Zhu T., Shen B.G., Sun J.R., Zhao H.W. and Zhan W.S. (2001) Appl. Phys. Lett. 78:3863–3865

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sethupathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, C., Sethupathi, K., Sankaranarayanan, V. et al. Particle size effect on magnetotransport properties of nanocrystalline Nd0.7Sr0.3MnO3 . J Nanopart Res 9, 765–776 (2007). https://doi.org/10.1007/s11051-006-9101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9101-x

Keywords

Navigation